• Title/Summary/Keyword: On Machine Measuring

Search Result 703, Processing Time 0.027 seconds

A Study on the Characteristic of Contact Pressure for CPB (Cold Pad Batch) Padder Roll Controlled by Hydraulic Single Cell (단일 유압 Cell로 제어되는 CPB(Cold Pad Batch)용 패더롤의 접촉압력 특성 연구)

  • Cho, Kyung-Chul;Lee, Eun-Ha;Jo, Soon-Ok;Park, Si-Woo;Hwang, Youn-Sung;Kim, Soo-Youn
    • Textile Coloration and Finishing
    • /
    • v.29 no.2
    • /
    • pp.86-96
    • /
    • 2017
  • To make uniform pressure distributed over the contact surface was necessary to cold pad batch dyeing machine. In this study, to confirm characteristic of flexibility and the contact pressure distribution through experimental analysis of padder roll were controlled by hydraulic cell. When there were no load pressure only inner pressure, the value of displacement in the center of padder were greater than the end of the padder. The results of this study showed that the padder had the optimum value of inner pressure for uniform contact pressure distribution. Measuring the contact pressure in a padder system were driven by using a pre-scale film. Uniform contact pressure distribution of cell padder were a linearly with load pressure and inner pressure. When the load pressure was less than 8 tons, the inner pressure for the uniform contact pressure was 1~4 bar. The padder roll performance curves proposed in this study were available for practical production environments and various roll designs.

Development of a Measuring Device for Coefficient of Friction between Connection Parts in Vehicle Head Lamps (자동차 헤드램프내 체결부품사이의 마찰계수 실험장치 개발)

  • Baek, Hong;Moon, Ji-Seung;Park, Sang-Shin;Park, Jong-Myeong
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.59-64
    • /
    • 2019
  • When slipping occurs between two materials, the coefficients of friction must be considered because these values determine the overall efficiency of the machine or slip characteristics. Therefore, it is important to find the coefficient of friction between two materials. This paper focuses on obtaining the coefficient of friction between an aiming bolt and a retainer located in the headlamps of a vehicle. This bolt supports the headlamp, and if the bolt is loosened by external vibration, the angle of the light will change and block the vision of pedestrians or other drivers. In order to study these situations, the coefficient of friction between aiming bolts and retainers needs to be measured. In addition, the coefficient of friction of materials used in the headlamp should be obtained. To determine these two factors, a new device is designed for two cases: surface-surface contact and surface-line contact. To increase reliability of the results, the device is designed using an air-bearing stage which uses compressed air as lubricant to eliminate the friction of the stage itself. Experiments were carried out by applying various vertical forces, and the results show that the coefficient of friction can be measured consistently. The procedure for designing the device and the results are discussed.

Application of power spectral density function for damage diagnosis of bridge piers

  • Bayat, Mahmoud;Ahmadi, Hamid Reza;Mahdavi, Navideh
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.57-63
    • /
    • 2019
  • During the last two decades, much joint research regarding vibration based methods has been done, leading to developing various algorithms and techniques. These algorithms and techniques can be divided into modal methods and signal methods. Although modal methods have been widely used for health monitoring and damage detection, signal methods due to higher efficiency have received considerable attention in various fields, including aerospace, mechanical and civil engineering. Signal-based methods are derived directly from the recorded responses through signal processing algorithms to detect damage. According to different signal processing techniques, signal-based methods can be divided into three categories including time domain methods, frequency domain methods, and time-frequency domain methods. The frequency domain methods are well-known and interest in using them has increased in recent years. To determine dynamic behaviours, to identify systems and to detect damages of bridges, different methods and algorithms have been proposed by researchers. In this study, a new algorithm to detect seismic damage in the bridge's piers is suggested. To evaluate the algorithm, an analytical model of a bridge with simple spans is used. Based on the algorithm, before and after damage, the bridge is excited by a sine force, and the piers' responses are measured. The dynamic specifications of the bridge are extracted by Power Spectral Density function. In addition, the Least Square Method is used to detect damage in the bridge's piers. The results indicate that the proposed algorithm can identify the seismic damage effectively. The algorithm is output-only method and measuring the excitation force is not needed. Moreover, the proposed approach does not need numerical models.

Multivariate Outlier Removing for the Risk Prediction of Gas Leakage based Methane Gas (메탄 가스 기반 가스 누출 위험 예측을 위한 다변량 특이치 제거)

  • Dashdondov, Khongorzul;Kim, Mi-Hye
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.23-30
    • /
    • 2020
  • In this study, the relationship between natural gas (NG) data and gas-related environmental elements was performed using machine learning algorithms to predict the level of gas leakage risk without directly measuring gas leakage data. The study was based on open data provided by the server using the IoT-based remote control Picarro gas sensor specification. The naturel gas leaks into the air, it is a big problem for air pollution, environment and the health. The proposed method is multivariate outlier removing method based Random Forest (RF) classification for predicting risk of NG leak. After, unsupervised k-means clustering, the experimental dataset has done imbalanced data. Therefore, we focusing our proposed models can predict medium and high risk so best. In this case, we compared the receiver operating characteristic (ROC) curve, accuracy, area under the ROC curve (AUC), and mean standard error (MSE) for each classification model. As a result of our experiments, the evaluation measurements include accuracy, area under the ROC curve (AUC), and MSE; 99.71%, 99.57%, and 0.0016 for MOL_RF respectively.

Experimental Analysis for Core Losses Prediction in Electric Machines by Using Soft Magnetic Composite (복합 연자성 소재의 전동기 코어손실 예측을 위한 실험적 분석)

  • Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.471-476
    • /
    • 2021
  • Soft magnetic composite (SMC) materials based on powder metallurgy have a number of advantages over the conventional electrical steel sheets commonly used in electric machines. Thus, technologies related to these materials have shown significant improvement in recent years. In general, SMCs are magnetically isotropic owing to the shape of the powder, which makes them suitable for the construction of electric machines with three-dimensional flux and complex structures. However, the materials with isotropic magnetic properties (such as SMCs) have complex vector hysteresis; thus, it is very difficult to predict accurate loss properties. Therefore, we manufactured ring-type specimens of electrical steel sheets and SMC, which analyzed their magnetic properties according to the specimen size, and performed the electromagnetic field analysis of a high-speed permanent magnet (PM) motor driven at 800 Hz or higher using the measured magnetic information to compare the core loss of the motor. The reliability of this paper has been verified by measuring the efficiency after manufacturing the motor.

Development of Wire/Wireless Communication Modules using Environmental Sensor Modules for LNG Storage Tanks (LNG 저장탱크용 환경 센서 모듈을 이용한 유무선 통신 모듈 개발)

  • Park, Byong Jin;Kim, Min Sung
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.53-61
    • /
    • 2022
  • Accidents are steadily occurring due to machine defects and carelessness during LNG storage operations. In previous studies, an environmental sensor module capable of measuring pressure, temperature, gas concentration, and flow to detect danger in advance was developed and the response speed according to the amount of leaked gas was measured. This paper proposes the development of a wired and wireless communication module that transmits data measured by the environmental sensor module to embedded devices connected to wired and wireless networks of SPI, UART, and LTE. First, a data communication module capable of interworking with an environmental sensor is designed. Design a protocol between devices in the Local Control Part and wired and wireless protocols in the Local Control Part and Remote Control Part. Ethernet, WiFi, and LTE communication modules were designed, and UART and SPI channels that can be linked with embedded controllers were designed. As a result, it was confirmed through a UI (User Interface) that each embedded device transmits data measured by the environmental sensor module while simultaneously communicating on a wired and wireless basis.

Frontal Face Video Analysis for Detecting Fatigue States

  • Cha, Simyeong;Ha, Jongwoo;Yoon, Soungwoong;Ahn, Chang-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.6
    • /
    • pp.43-52
    • /
    • 2022
  • We can sense somebody's feeling fatigue, which means that fatigue can be detected through sensing human biometric signals. Numerous researches for assessing fatigue are mostly focused on diagnosing the edge of disease-level fatigue. In this study, we adapt quantitative analysis approaches for estimating qualitative data, and propose video analysis models for measuring fatigue state. Proposed three deep-learning based classification models selectively include stages of video analysis: object detection, feature extraction and time-series frame analysis algorithms to evaluate each stage's effect toward dividing the state of fatigue. Using frontal face videos collected from various fatigue situations, our CNN model shows 0.67 accuracy, which means that we empirically show the video analysis models can meaningfully detect fatigue state. Also we suggest the way of model adaptation when training and validating video data for classifying fatigue.

Design and Implementation of Biometrics Security System Using photoplethysmogram (광용적맥파를 이용한 생체인식 보안시스템의 설계 및 구현)

  • Kim, Hyen-Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.4
    • /
    • pp.53-60
    • /
    • 2010
  • Biometrics are methods of recognizing a person based on the physiological or behavioral characteristics of his of her body. They are highly secure with little risk of loss or falsification by others. This paper has designed and implemented a security system of biometrics by precisely measuring heartbeat signals at two fingertips and using a photoplethysmogram, which is applicable to biometrics. A performance evaluation has led to the following result. The security system of biometrics for personal authentication which has been designed and implemented by this study has achieved a recognition rate of 90.5%. The security system of biometrics suggested here has merits of time saving and easy accessibility. The system is touch-based and collects the necessary biometrics information by simply touching the machine with fingers, so anyone can utilize the system without any difficulty.

Three-dimensional Reconstruction of X-ray Imagery Using Photogrammetric Technique (사진측량기법을 이용한 엑스선영상의 3차원 모형화)

  • Kim, Eui Myoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.277-285
    • /
    • 2008
  • X-ray images are wildly used in medical applications, and these can be more efficiently find scoliosis which is appearing during the growth of human skeleton than others. This research is focused on the calibration of X-ray image and three-dimensional coordinate determination of objects. Three-dimensional coordinate of objects taken by X-ray are determined by two step procedure. Firstly, interior and exterior orientation parameters are determined by camera calibration using Primary Calibration Object (PCO) which has two sides with embedded radiopaque steel ball. Secondly, calibration cage coordinates which is composed of two acrylic sheets that are perpendicular to X-ray source are determined by the parameters. Three-dimensional coordinates of calibration cage determined by photogrammetric technique are compared with that of Coordinate Measuring Machine (CMM). Though the accuracy analysis, X direction which is parallel to X-ray source error values are relatively higher than those of Y and Z directions. But, the accuracies of Y and Z axis are approximately -3 mm to 3 mm. From the research results, it is considered that photogrammetric technique is applied to determine three-dimensional coordinates of patients or assist to make medical devices.

Ensemble Learning with Support Vector Machines for Bond Rating (회사채 신용등급 예측을 위한 SVM 앙상블학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.29-45
    • /
    • 2012
  • Bond rating is regarded as an important event for measuring financial risk of companies and for determining the investment returns of investors. As a result, it has been a popular research topic for researchers to predict companies' credit ratings by applying statistical and machine learning techniques. The statistical techniques, including multiple regression, multiple discriminant analysis (MDA), logistic models (LOGIT), and probit analysis, have been traditionally used in bond rating. However, one major drawback is that it should be based on strict assumptions. Such strict assumptions include linearity, normality, independence among predictor variables and pre-existing functional forms relating the criterion variablesand the predictor variables. Those strict assumptions of traditional statistics have limited their application to the real world. Machine learning techniques also used in bond rating prediction models include decision trees (DT), neural networks (NN), and Support Vector Machine (SVM). Especially, SVM is recognized as a new and promising classification and regression analysis method. SVM learns a separating hyperplane that can maximize the margin between two categories. SVM is simple enough to be analyzed mathematical, and leads to high performance in practical applications. SVM implements the structuralrisk minimization principle and searches to minimize an upper bound of the generalization error. In addition, the solution of SVM may be a global optimum and thus, overfitting is unlikely to occur with SVM. In addition, SVM does not require too many data sample for training since it builds prediction models by only using some representative sample near the boundaries called support vectors. A number of experimental researches have indicated that SVM has been successfully applied in a variety of pattern recognition fields. However, there are three major drawbacks that can be potential causes for degrading SVM's performance. First, SVM is originally proposed for solving binary-class classification problems. Methods for combining SVMs for multi-class classification such as One-Against-One, One-Against-All have been proposed, but they do not improve the performance in multi-class classification problem as much as SVM for binary-class classification. Second, approximation algorithms (e.g. decomposition methods, sequential minimal optimization algorithm) could be used for effective multi-class computation to reduce computation time, but it could deteriorate classification performance. Third, the difficulty in multi-class prediction problems is in data imbalance problem that can occur when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. SVM ensemble learning is one of machine learning methods to cope with the above drawbacks. Ensemble learning is a method for improving the performance of classification and prediction algorithms. AdaBoost is one of the widely used ensemble learning techniques. It constructs a composite classifier by sequentially training classifiers while increasing weight on the misclassified observations through iterations. The observations that are incorrectly predicted by previous classifiers are chosen more often than examples that are correctly predicted. Thus Boosting attempts to produce new classifiers that are better able to predict examples for which the current ensemble's performance is poor. In this way, it can reinforce the training of the misclassified observations of the minority class. This paper proposes a multiclass Geometric Mean-based Boosting (MGM-Boost) to resolve multiclass prediction problem. Since MGM-Boost introduces the notion of geometric mean into AdaBoost, it can perform learning process considering the geometric mean-based accuracy and errors of multiclass. This study applies MGM-Boost to the real-world bond rating case for Korean companies to examine the feasibility of MGM-Boost. 10-fold cross validations for threetimes with different random seeds are performed in order to ensure that the comparison among three different classifiers does not happen by chance. For each of 10-fold cross validation, the entire data set is first partitioned into tenequal-sized sets, and then each set is in turn used as the test set while the classifier trains on the other nine sets. That is, cross-validated folds have been tested independently of each algorithm. Through these steps, we have obtained the results for classifiers on each of the 30 experiments. In the comparison of arithmetic mean-based prediction accuracy between individual classifiers, MGM-Boost (52.95%) shows higher prediction accuracy than both AdaBoost (51.69%) and SVM (49.47%). MGM-Boost (28.12%) also shows the higher prediction accuracy than AdaBoost (24.65%) and SVM (15.42%)in terms of geometric mean-based prediction accuracy. T-test is used to examine whether the performance of each classifiers for 30 folds is significantly different. The results indicate that performance of MGM-Boost is significantly different from AdaBoost and SVM classifiers at 1% level. These results mean that MGM-Boost can provide robust and stable solutions to multi-classproblems such as bond rating.