• 제목/요약/키워드: On Cold Damage

검색결과 418건 처리시간 0.032초

양생온도 변화 및 버블시트 두께변화에 따른 콘크리트의 온도이력특성 (Temperature History of Concrete Corresponding to Various Bubble Sheets Layer and Curing Temperature)

  • 홍석민;백대현;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 추계 학술논문 발표대회
    • /
    • pp.21-25
    • /
    • 2008
  • In this paper, the temperature history and the strength development of concrete corresponded to various bubble sheets layer and curing temperature. Based on the results, In case of the test temperature of -5℃, concrete subject in the exposure condition, result in a frost damage at initial stage by a fall of below zero temperature. In case of the combination of PE film and non woven fabric was after 36 hour, and combination of bubble sheet over double, a tremendous insulating effect of bubble sheet over double is confirmed due to the temperature of concrete fall of below zero temperature after 60 hours. Meanwhile, regarding the -15℃ of temperature, special measure for insulation curing is necessary to secure stability against early frost damage because frost damage was not affected by the lapping thickness of bubble sheet subjected to severe cold weather condition.

  • PDF

Analysis of the Efficiency of Improved Bubble Sheet for Heat Curing in Cold Weather

  • Choi, Hyun-Kyu;Son, Myung-Sik;Han, Cheon-Goo
    • 한국건축시공학회지
    • /
    • 제13권1호
    • /
    • pp.38-47
    • /
    • 2013
  • When building with concrete in cold weather, an insulation method of heat curing must be determined, and a holistic curing plan that considers the characteristics of structures, the heat loss coefficient of a curing sheet, the joint condition of the curing materials and the quantity of heat produced by a heating apparatus is an essential prerequisite for protection against early frost damage. But on a number of national construction sites, there have been serious problems in cold weather concreting due to the unreliability of the information obtained from practical experience. In the construction field in Japan, there is a specification for heat curing prepared by Japanese Architectural Society, which provides an equation for calculating heat quantity. It is also necessary to adopt a detailed specification for a standard heat curing method that is applicable to all national construction sites. In this study, the effect of bubble sheets on the economic feasibility of cold weather concrete is investigated through a comparison with the blue sheets commonly prescribed in national construction sites. In conclusion, this study found that bubble sheets had the effect of reducing the cost of curing materials and the fuel cost consumed by a heating apparatus, compared to the use of blue sheets.

EFFECT OF HEAT CURING METHODS ON THE TEMPERATURE HISTORY AND STRENGTH DEVELOPMENT OF SLAB CONCRETE FOR NUCLEAR POWER PLANT STRUCTURES IN COLD CLIMATES

  • Lee, Gun-Che;Han, Min-Cheol;Baek, Dae-Hyun;Koh, Kyung-Taek
    • Nuclear Engineering and Technology
    • /
    • 제44권5호
    • /
    • pp.523-534
    • /
    • 2012
  • The objective of this study was to experimentally investigate the effect of heat curing methods on the temperature history and strength development of slab concrete exposed to $-10^{\circ}C$. The goal was to determine proper heat curing methods for the protection of nuclear power plant structures against early-age frost damage under adverse (cold) conditions. Two types of methods were studied: heat insulation alone and in combination with a heating cable. For heat curing with heat insulation alone, either sawdust or a double layer bubble sheet (2-BS) was applied. For curing with a combination of heat insulation and a heating cable, an embedded heating cable was used with either a sawdust cover, a 2-BS cover, or a quadruple layer bubble sheet (4-BS) cover. Seven different slab specimens with dimensions of $1200{\times}600{\times}200$ mm and a design strength of 27 MPa were fabricated and cured at $-10^{\circ}C$ for 7 d. The application of sawdust and 2-BS allowed the concrete temperature to fall below $0^{\circ}C$ within 40 h after exposure to $-10^{\circ}C$, and then, the temperature dropped to $-10^{\circ}C$ and remained there for 7 d owing to insufficient thermal resistance. However, the combination of a heating cable plus sawdust or 2-BS maintained the concrete temperature around $5^{\circ}C$ for 7 d. Moreover, the combination of the heating cable and 4-BS maintained the concrete temperature around $10^{\circ}C$ for 7 d. This was due to the continuous heat supply from the heating cable and the prevention of heat loss by the 4-BS. For maturity development, which is an index of early-age frost damage, the application of heat insulation materials alone did not allow the concrete to meet the minimum maturity required to protect against early-age frost damage after 7 d, owing to poor thermal resistance. However, the combination of the heating cable and the heat insulating materials allowed the concrete to attain the minimum maturity level after just 3 d. In the case of strength development, the heat insulation materials alone were insufficient to achieve the minimum 7-d strength required to prevent early-age frost damage. However, the combination of a heating cable and heat insulating materials met both the minimum 7-d strength and the 28-d design strength owing to the heat supply and thermal resistance. Therefore, it is believed that by combining a heating cable and 4-BS, concrete exposed to $-10^{\circ}C$ can be effectively protected from early-age frost damage and can attain the required 28-d compressive strength.

미니돼지 정액 동결 시 Methyl-Beta-Cyclodextrin (MBCD)이 냉각 충격과 막 콜레스테롤량에 미치는 영향 (Effects of Methyl-Beta-Cyclodextrin (MBCD) on Cold Shock and Membrane Cholesterol Quantity during the Freezing Process of Miniature Pig Spermatozoa)

  • 이성영;이용승;정희태;양부근;박춘근
    • Reproductive and Developmental Biology
    • /
    • 제35권3호
    • /
    • pp.265-271
    • /
    • 2011
  • This study was undertaken to find out the effect of methyl-beta-cyclodextrin (MBCD) on cold shock and membrane cholesterol quantity of sperm during the freezing process in miniature pigs. For this study, semen ejaculated from PWG M-type miniature pig was diluted that freezing solution (with egg yolk group) and m-Modena B (without egg yolk group) treated with 0, 1, 5, 10 and 20 mM MBCD before freezing process. The diluted semen was monitored sperm ability at room temperature, after cooled until $5^{\circ}C$ and after forzen-thawed for cold shock test of spermatozoa. Also, membrane cholesterol of sperm was extracted by folch solution at the same time sperm ability was assessed for viability and acrosomal status. The membrane cholesterol quantity was measured by thin-layer chromatography (TLC) method. The result, viability and acrosome integrity in semen diluted without egg yolk groups were decreased at all temperature range by increasing of MBCD concentration. In particular, sperm of egg yolk group was showed that significantly higher viability and lower acrosome damage when treated with 5 mM MBCD (p<0.05). The results of TLC experiment, cholesterol amounts were increased with MBCD cocentration in egg yolk, and decreased with MBCD concentration in m-Modena B. In cryopreservation efficiency, there was no significant difference at viability, and acrosomal state of sperm in 5 mM MBCD concentration was significantly lower in acrosome damage than other groups (p<0.05). Therefore, the addition MBCD in egg yolk was protected spermatozoa from cold shock injury. This protective effect of MBCD may be due to addition of sperm membrane cholesterol.

Ecophysiological Changes in a Cold Tolerant Transgenic Tobacco Plant Containing a Zinc Finger Protein (PIF1) Gene

  • Yun, Sung-Chul;Kwon, Hawk-Bin
    • 한국환경농학회지
    • /
    • 제27권4호
    • /
    • pp.389-394
    • /
    • 2008
  • The ecophysiological changes occurring upon cold stress were studied using cold tolerant transgenic and wild-type tobacco plants. In a previous study, cold tolerance in tobacco was induced by the introduction of a gene encoding the zinc finger transcription factor, PIF1. Gas-exchange measurements including net photosynthesis and stomatal conductance were performed prior to, in the middle of, and after a cold-stress treatment of $1{\pm}2^{\circ}C$ for 96 h in each of the four seasons. In both transgenic and wild-type plants, gas-exchange parameters were severely decreased in the middle of the cold treatment, but had recovered after 2-3 h of adaptation in a greenhouse. Most t-test comparisons on gas-exchange measurements between the two plant types did not show statistical significance. Wild-type plants had slightly more water-soaked damage on the leaves than the transgenic plants. A light-response curve did not show any differences between the two plant types. However, the curve for assimilation-internal $CO_2$ in wild-type plants showed a much higher slope than that of the PIF1 transgenic plants. This means that the wild-type plant is more capable of regenerating Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and has greater electron transport capacity. In conclusion, cold-resistant transgenic tobacco plants demonstrated a better recovery of net photosynthesis and stomatal conductance after cold-stress treatment compared to wild-type plants, but the ecophysiological recoveries of the transgenic plants were not statistically significant.

Powder Metallurgical Tool Steel Solutions for Powder Pressing and Other High-performance Cold Work Applications

  • Schemmel, Ingrid;Marsoner, Stefan;Makovec, Heinz
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.841-843
    • /
    • 2006
  • In high-performance cold work applications, tool failure depends on the predominating loading conditions. Typical failure mechanisms are a combination of abrasive wear, adhesive wear, plastic deformation, cracking and edge crumbling. In this paper we demonstrate how the microstructure of tool steels can be positively influenced by modifying the alloying system and the production route to meet the demands of the different loading situations which occur during operation. The investigation was focused on ductility, fatigue strength and wear resistance. Theoretical considerations were confirmed by practical tests.

  • PDF

비파괴 기법을 이용한 스마트 복합재료의 열충격손상평가 (Evaluation on Thermal Shock Damage of Smart Composite using Nondestructive Technique)

  • 이진경;박영철;이규창;이준현
    • Composites Research
    • /
    • 제20권3호
    • /
    • pp.37-42
    • /
    • 2007
  • 금속복합재료에서는 강화재와 기지재 사이의 열팽창계수 차이에 의해 복합재료 내부에 잔류응력이 남아있어 복합재료 전체의 강도저하를 가져온다. 본 연구에서는 TiNi 형상기억합금을 강화재료로써 이러한 잔류응력 문제를 해결하기 위하여 이용하였다. TiNi 형상기억합금은 형상기억효과를 이용하여 복합재료의 잔류응력문제를 해결할 뿐만 아니라 복합재료의 인장강도를 증가시키는 역할을 한다. 핫프레스 방법에 의해 제작된 형상기억복합재료의 강도증가를 위하여 냉간압연을 실시하여 실험을 실시하였다. 이와 같이 제작된 형상기억복합재료의 저온에서의 미시적 손상거동을 평가하기 위하여 음향방출기법을 이용하였다. 또한 열충격을 받은 시험편의 손상에 대한 연구도 이루어졌다.

내한촉진제를 사용한 한중콘크리트의 실구조물 적용에 관한 연구 (Application of Cold Weather Concreting with Accelerator for Freeze Protection to Full Scale Structures)

  • 김영진;백태룡;이상수;원철;김동석
    • 콘크리트학회논문집
    • /
    • 제15권2호
    • /
    • pp.254-262
    • /
    • 2003
  • 본 연구는 내한촉진제를 사용한 한중콘크리트의 배합선정, 제조 생산, 타설 및 양생 등 실구조물에 대한 적용성에 관한 것이다. 내한촉진제의 사용량 및 물-시멘트비의 선정이 한중콘크리트의 초기동해방지 및 강도증진성상에 커다란 영향을 주기 때문에 배합설계단계에서 충분한 검토가 필요하다. 내한촉진제를 사용한 굳지 않은 콘크리트의 유동성상은 전반적으로 동일 물-시멘트비에서 유사한 결과를 나타나고 있었으며, 고성능감수제의 종류에 따른 경시변화 검토결과, 초기 플로우 및 유동성 손실이 적게 나타나는 폴리카르본산계 고성능감수제가 멜라민계 보다 우수한 것으로 판단된다. 강도관리용 공시체는 기존의 현장봉함 양생보다는 실구조물의 온도이력과 유사한 경향을 보이는 간이단열방법으로 양생하는 것이 유효할 것으로 판단된다. 로지스틱곡선을 이용하여 각 양생 방법별 내한촉진제를 사용한 한중콘크리트의 강도증진성상을 검토한 결과, 강도증진에 미치는 내한촉진제의 영향이 상온조건보다는 저온조건 하에서 효과가 높은 것으로 나타났다. 내한촉진제를 사용한 콘크리트는 평균 외기온 $-2^{\circ}C$(최저기온$-12^{\circ}C$)에서 간단한 비닐양생만으로 초기동해 방지를 위해 필요한 압축강도 $5N/{mm}^2$의 발현이 가능하였고 재령28일에 목표로 하는 소요강도를 만족시켰다.

동결피해분석을 위한 저온지역 지반구조물의 보수보강특성 (Maintenance Characteristics of Geotechnical Structures in Cold Region for Freeze Damage Analysis)

  • 황영철
    • 한국지반환경공학회 논문집
    • /
    • 제14권3호
    • /
    • pp.35-40
    • /
    • 2013
  • 일반적으로 동결대상지역에 설치되는 지반구조물은 동결피해에 대한 별도의 대책을 필요로 한다. 그러나 국내의 경우 터널, 옹벽 등과 같은 지반구조물에 대한 동결피해 조사 및 사례보고가 거의 이루어지지 않고 있어, 이를 저감시키기 위한 연구는 매우 미미한 실정이다. 이러한 이유로 국내의 구조물 관련 설계기준도 특별하게 이를 규정화하고 있지 않다. 본 연구에서는 터널, 비탈면, 옹벽의 동결피해에 대한 현장조사 및 1종, 2종 시설물에 대한 약 40여 년간의 지반구조물 유지관리 이력을 분석하여 구조물 설치지역의 기온에 따른 구조물의 유지관리 특성을 파악하였다. 그 결과 우리나라에서 동결깊이가 약 120cm 이상이고, 기온이 비교적 낮은 강원 산간지역 및 강원 북부, 경기 북부지역의 지반구조물은 기온이 비교적 따뜻한 타 지역과 달리 훨씬 더 오랫동안 보수보강을 필요로 하는 것으로 분석되었다. 이로부터 국내 동결피해 대상지역에 설치되는 구조물에 대한 설계기준 개정의 필요성을 제안하였다.

Modeling of wind-induced fatigue of cold-formed steel sheet panels

  • Rosario-Galanes, Osvaldo;Godoy, Luis A.
    • Structural Engineering and Mechanics
    • /
    • 제49권2호
    • /
    • pp.237-259
    • /
    • 2014
  • Wind-induced failure around screwed connections has been documented in roof and wall cladding systems made with steel sheet cold-formed panels during high wind events. Previous research has found that low cycle fatigue caused by stress concentration and fluctuating wind loads is responsible for most such failures. A dynamic load protocol was employed in this work to represent fatigue under wind effects. A finite element model and fatigue criteria were implemented and compared with laboratory experiments in order to predict the fatigue failure associated with fluctuating wind loads. Results are used to develop an analytical model which can be employed for the fatigue analysis of steel cold-formed cladding systems. Existing three dimensional fatigue criteria are implemented and correlated with fatigue damage observed on steel claddings. Parametric studies are used to formulate suitable yet simple fatigue criteria. Fatigue failure is predicted in different configurations of loads, types of connections, and thicknesses of steel folded plate cladding. The analytical model, which correlated with experimental results reported in a companion paper, was validated for the fatigue life prediction and failure mechanism of different connection types and thicknesses of cold-formed steel cladding.