• Title/Summary/Keyword: On Board Reliability

Search Result 284, Processing Time 0.026 seconds

Reliability Estimation of Ball Grid Array 63Sn-37Pb Solder Joint (Ball Grid Array 63Sn-37Pb Solder joint 의 건전성 평가)

  • 명노훈;이억섭;김동혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.630-633
    • /
    • 2004
  • Generally, component and FR-4 board are connected by solder joint. Because material properties of components and FR-4 board are different, component and FR-4 board show different coefficients of thermal expansion (CTE) and thus strains in component and board are different when they are heated. That is, the differences in CTE of component and FR-4 board cause the dissimilarity in shear strain and BGA solder joint s failure. The first order Taylor series expansion of the limit state function incorporating with thermal fatigue models is used in order to estimate the failure probability of solder joints under heated condition. A model based on plastic-strain rate such as the Coffin-Manson Fatigue Model is utilized in this study. The effects of random variables such as frequency, maximum temperature, and temperature variations on the failure probability of the BGA solder joint are systematically investigated by using a failure probability model with the first order reliability method(FORM).

  • PDF

Memory Scrubbing for On-Board Computer of STSA T-2 (과학기술위성 2호 탑재컴퓨터의 메모리 세정 방안)

  • Ryu, Sang-Moon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.519-524
    • /
    • 2007
  • The OBC(on-board computer) of a satellite which plays a role of the controller for the satellite should be equipped with preventive measures against transient errors caused by SEU(single event upset). Since memory devices are pretty much susceptible to these transient errors, it is essential to protect memory devices against SFU. A common method exploits an error detection and correction code and additional memory devices, combined with periodic memory scrubbing. This paper proposes an effective memory scrubbing scheme for the OBC of STSAT-2. The memory system of the OBC is briefly mentioned and the reliability of the information stored in the memory system is analyzed. The result of the reliability analysis shows that there exist optimal scrubbing periods achieving the maximum reliability for allowed overall scrubbing overhead and they are dependent on the significance of the information stored. These optimal scrubbing periods from a reliability point of view are derived analytically.

Effects of Underfills on the Dynamic Bending Reliability of Ball Grid Array Board Assembly (Ball Grid Array 보드 어셈블리의 동적굽힘 신뢰성에 미치는 언더필의 영향)

  • Jang, Jae-Won;Bang, Jung-Hwan;Yoo, Se-Hoon;Kim, Mok-Soon;Kim, Jun-Ki
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.650-654
    • /
    • 2011
  • In this paper, the effects of conventional and newly developed elastomer modified underfill materials on the mechanical shock reliability of BGA board assembly were studied for application in mobile electronics. The mechanical shock reliability was evaluated through a three point dynamic bending test proposed by Motorola. The thermal properties of the underfills were measured by a DSC machine. Through the DSC results, the curing condition of the underfills was selected. Two types of underfills showed similar curing behavior. During the dynamic bending reliability test, the strain of the PCB was step increased from 0.2% to 1.5% until the failure circuit was detected at a 50 kHz sampling rate. The dynamic bending reliability of BGA board assembly using elastomer modified underfill was found to be superior to that of conventional underfill. From mechanical and microstructure analyses, the disturbance of crack propagation by the presence of submicron elastomer particles was considered to be mainly responsible for that result rather than the shear strength or elastic modulus of underfill joint.

New Generation of Lead Free Paste Development

  • Albrecht Hans Juergen;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.233-241
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces strictly related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

New Generation of Lead Free Solder Spheres 'Landal - Seal'

  • Walter H.;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.211-219
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces stric시y related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials. In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

A study on Automatic field Test Equipment with improved maintenance and environmental reliability

  • Lee, Seok-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.3
    • /
    • pp.9-16
    • /
    • 2018
  • In this paper, I purpose one of the development methods for portable Automatic field Test Equipment(ATE) with VME form factor. Almost portable ATE have not used to standards form factor and they are connected by mechanical non-rigid general connectors and wire harnesses among the components. Furthermore, it is hard to reuse developed board. So, it decreases to reusability of developed board and it is hard to maintenance of ATE. Even those things have weakness for vibration and drop test especially in portable ATE. The XK9A1 ATE using VME form factor has environmental reliability through vibration, drop, temperature test. It consists of 5 developed board called the control board, the wire & wireless communication board, the power supply board, the load board and the mother board. It is connected by two wire harnesses between mother board and extern circular connectors. The control board send the data and address to other board though each 16-bit data and 20-bit address line. You can develop the function board what you want to using those data & address line when it comes to needing other function board.

Implementation of Main Computation Board for Safety Improvement of railway system (철도시스템의 안전성 향상을 위한 주연산보드 구현)

  • Park, Joo-Yul;Kim, Hyo-Sang;Lee, Joon-Hwan;Kim, Bong-Taek;Chung, Ki-Seok
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1195-1201
    • /
    • 2011
  • Since the release of safety standard IEC 61508 which defines functional safety of electronic safety-related systems, SIL(Safety Integrity Level) certification for railway systems has gained lots of attention lately. In this paper, we propose a new design technique of the computer board for train control systems with high reliability and safety. The board is designed with TMR(Triple Modular Redundancy) using a certified SIL3 Texas Instrument(TI)'s TMS570 MCU(Micro-Controller Unit) to guarantee safety and reliability. TMR for the control device is implemented on FPGA(Field Programmable Gate Array) which integrates a comparator, a CAN(Controller Area Network) communication module, built-in self-error checking, error discriminant function to improve the reliability of the board. Even if a malfunction of a processing module occurs, the safety control function based on the proposed technique lets the system operate properly by detecting and masking the malfunction. An RTOS (Real Time Operation System) called FreeRTOS is ported on the board so that reliable and stable operation and convenient software development can be provided.

  • PDF

The analysis on the NDF(No Defect Found) of Note PC main board using HALT (HALT 기술을 이용한 Note PC main board의 NDF성 고장 검토 사례)

  • 강상구;김재이
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.397-403
    • /
    • 2001
  • 본 논문은 시장 사용 조건에서 발생한 PC제품의 Main board 고장품이 회수 후 검토 시 정상적으로 기능하여 나타나는 NDF(No Defect Found) 판정 상황에 대한 효과적인 검토 방안을 제시한다. NDF 시료의 고장성 진위 여부를 가리기 위해 HALT(Highly Accelerated Life Test)기술을 응용한 결과 기존의 시험 검토 방법보다 높은 재현 효과를 보았다. 결함 제품의 잠재적인 취약부위를 단시간에 효과적으로 촉진하고 들춰내는 HALT 기술은 전자 제품의 NDF성 고장을 기술적으로 접근하여 개선할 수 있는 기초를 제공하는 유용한 가속 스트레스 시험 기술임이 입증되었다.

  • PDF

Using Reliability Tools to Characterize Wood Strand Thickness of Oriented Strand Board Panels

  • Chastain, J.S.;Young, T.M.;Guess, F.M.;Leo, R.V.
    • International Journal of Reliability and Applications
    • /
    • v.10 no.2
    • /
    • pp.89-99
    • /
    • 2009
  • Oriented Strand Board (OSB) is an important engineered wood product used in housing construction which has a lower environmental impact or "carbon footprint." In this paper, reliability and statistical tools are applied to gain insights on the strand thickness of OSB panels. An OSB panel consists of several hundred wood strands that are resinated and pressed. The variability of OSB strand thickness for six manufacturers in the Eastern United States is examined as a whole, as well as individually. Little research exists on OSB strand thickness across mills even though strand thickness variability has been documented in laboratory experiments to greatly influence the dimensional stability of OSB panels. Our aims are to quantify and characterize strand thickness, plus apply reliability techniques, such as Kaplan-Meier curves, to characterize the probability of strand thickness. We further explore graphically and statistically the thickness of the strands.

  • PDF

Exploring Reliability of Oriented Strand Board's Tensile and Stiffness Strengths

  • Wang, Y.;Young, T.M.;Guess, F.M.;Leon, R.V.
    • International Journal of Reliability and Applications
    • /
    • v.8 no.1
    • /
    • pp.111-124
    • /
    • 2007
  • In this paper, we apply insightful statistical reliability tools to manage and seek improvements in the strengths of Oriented Strand Board (OSB). As a part of the OSB manufacturing process, the product undergoes destructive testing at various intervals to determine compliance with customers' specifications. Workers perform these tests on sampled cross sections of the OSB panel to measure the tensile strength, also called internal bond (IB), in pounds per square inches until failure. Additional stiffness strength tests include parallel and perpendicular elasticity indices (EI), which are taken from cross sectional samples of the OSB panel in the parallel and perpendicular directions with respect to the orientation of the wood strands. We explore both graphically and statistically these "pressure-to-failures" of OSB. Also, we briefly comment on reducing sources of variability in the IB and EI of OSB.

  • PDF