• 제목/요약/키워드: On Board Diagnostics

Search Result 41, Processing Time 0.021 seconds

EV Battery State Estimation using Real-time Driving Data from Various Routes (전기차 주행 데이터에 의한 경로별 배터리 상태 추정)

  • Yang, Seungmoo;Kim, Dong-Wan;Kim, Eel-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.139-146
    • /
    • 2019
  • As the number of electric vehicles (EVs) in Jejudo Island increases, the secondary use of EV batteries is becoming increasingly mandatory not only in reducing greenhouse gas emissions but also in promoting resource conservation. For the secondary use of EV batteries, their capacity and performance at the end of automotive service should be evaluated properly. In this study, the battery state information from the on-board diagnostics or OBD2 port was acquired in real time while driving three distinct routes in Jejudo Island, and then the battery operating characteristics were assessed with the driving routes. The route with higher altitude led to higher current output, i.e., higher C-rate, which would reportedly deteriorate state of health (SOH) faster. In addition, the SOH obtained from the battery management system (BMS) of a 2017 Kia Soul EV with a mileage of 55,000 km was 100.2%, which was unexpectedly high. This finding was confirmed by the SOH estimation based on the ratio of the current integral to the change in state of charge. The SOH larger than 100% can be attributed to the rated capacity that was lower than the nominal capacity in EV application. Therefore, considering the driving environment and understanding the SOH estimation process will be beneficial and necessary in evaluating the capacity and performance of retired batteries for post-vehicle applications.

Driving Anomaly Pattern Detection System Based on Vehicle Internal Diagnostic Data Analysis (차량 내부 진단 데이터 분석 기반의 주행 이상 패턴 감지 시스템)

  • Tae-jeong Park;Ji-ho Park;Bo-yoon Seo;Jun-ha Shin;Kyung-hwan Choi;Hongseok Yoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.299-300
    • /
    • 2024
  • 첨단 기술의 발전과 함께 지능형 운전자 보조 시스템의 성능 및 교통 시스템 체계가 고도화됨에 따라 전반적인 교통사고 발생 건수는 줄어드는 추세지만 대한민국의 교통사고 발생 빈도는 아직 OECD 평균 대비 높은 실정이다. 특히, 2020년 경제 협력 개발 기구(OECD) 통계에 따르면 대한민국의 인구 10만 명당 교통사고 사망자 수는 회원국 36개 중 29위로 매우 높은 축에 속한다. 따라서, 본 논문에서는 교통사고 발생률을 낮추는 데 도움을 줄 수 있는 주행 이상 패턴 감지 시스템을 제안한다. 제안한 방법에서는 실시간 영상 분석을 통해 신호등 및 차선을 인식함과 동시 차량 내부 진단 데이터에 대한 시계열 분석을 기반으로 운전자의 운전 패턴을 분석한 후 평소와 다른 이상 징후를 발견하면 운전자에게 경고 알림을 제공하여 위험한 상황을 회피할 수 있도록 지원한다.

  • PDF

정보시스템 감리영역 평가에 영향을 미치는 요인에 관한 탐색적 연구

  • Won, Min-Jeong;Na, Jong-Hoe;Lee, Sang-Jun
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2008.10b
    • /
    • pp.96-103
    • /
    • 2008
  • The information systems audit is an proactive action to find out the predicted issues on proceeding the business beforehand, to make out whether the information systems satisfies the user's demand or not and to check up the result of the project with complementing the capabilities of self-diagnostics for the complicated and advanced information system. However, the results of the audited project are apt to be regarded as a failure in a case that an opinion of the audit area evaluation is described as 'insufficient' or 'negative' in the audit report that is submitted as the result of the audit. It makes a lot of arguments among the board of audit, the institution ordering the audit and the auditor. In this study, we made an attempt to finding out the factors affecting the audit area evaluation and verifying them objectively. A study model and hypothesis including the improvement type of the recommended subject to be improved, the importance, the audit time, the business scale of the audited object and the auditing company as a factor variable were established and the hypothesis was verified by analyzing the correlation between the factor variables and the audit area evaluation.

  • PDF

Developing integrated black-box system for proving sudden unintended acceleration of vehicles utilizing OBD-II and a camera attached to a foot (자동차 급발진 사고 시 원인 규명을 위하여 OBD-II 와 차량 내 풋 카메라를 이용한 통합 블랙박스 시스템 개발)

  • Lee, Jung-eun;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.438-441
    • /
    • 2013
  • 알려진바 한 해 우리나라에서 200여 건 이상의 차량 급발진으로 추청 되는 사고(Sudden Unintended Acceleration, SUA)가 발생하지만 지금까지 명확하게 급발진으로 추정되는 사고의 원인을 밝혀내지 못해 사고를 당한 운전자는 막대한 정신적, 물질적 피해를 보고 있다. 이에 차량의 급발진으로 추정되는 사고 시 차량의 상태 및 원인 파악을 위하여 차량 내 설치되는 OBD-II(On Board Diagnostics-II)와 운전자의 발쪽을 촬영하는 Foot Camera를 이용하여 통합 블랙박스 시스템을 구현하고자 한다. 지금까지의 블랙박스 시스템은 단순히 사고 시 영상을 촬영 저장하여 운전자에게 보여 주는 장치라면 현재 구현하려는 통합시스템은 블랙박스 자체에서 이동 통신을 통한 차량데이터 실시간 서버 전송 및 스마트 폰과 스마트 패드의 앱(App)으로 OBD-II와 메인서버와의 통신을 통해 사용자 차량의 현재 상태, 차량의 이상 유무, 소모품 교환 시기, 차량사고 시 영상 및 급발진 추정 시 차량상태, 위치, 이동거리, 운전자의 발쪽 영상 저장 및 재생 등 사용자가 필요로 하는 다양한 기능과 정보들을 블랙박스 하나로 통합하여 구현 할 것이다. 이 시스템이 개발되면 차량 관리에 서툰 여성 운전자들, 좀 더 체계적이고 손쉽게 내 차 정보를 원하는 운전자들과 전 세계 자동차 소비자들의 관심사인 급발진에 대한 사고 분석이 정확해 질 것으로 여겨진다.

  • PDF

A implement of vehicle Blackbox system with OBD and MOST network (OBD와 MOST 네트워크를 이용한 차량용 블랙박스 시스템 설계)

  • Baek, Sung-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.66-69
    • /
    • 2010
  • Lately, vehicle combined vehicle and IT(Information Technology) for vehicle's safety and convenience. so, vehicles is equipped with many ECU(Electronic control unit). the ECU's transmit data about each electronic control unit with OBD(On-Board Diagnostics) Network and data about each multimedia with MOST(Media Oriented System Transport) Network. In this paper, Supplementing disadvantage of existing blackbox, Using MOST of in-vehicle multimedia network and OBD-II of in-vehicle control network, blackbox system obtain the vehicle's driving state data. so, blackbox system judge vehicle's driving state and provide vehicle's driving state information to driver. Blackbox system implement the features mentioned above. as a result, blackbox is going to be more accurate blackbox system.

  • PDF

OBD2 Vehicle Operation Information Black Box System for Accident Preparedness (사고 발생에 대비한 OBD2 차량 운행 정보 블랙박스)

  • Jun-Young Kim;Jun-Hee Kim;Hyung-Seong Oh;Jae-Hyung Choi;Kyung-Ho Ko;Myung-Chun Ryoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.279-280
    • /
    • 2024
  • 본 논문에서는 주행 중 차량의 상태를 실시간으로 모니터링함과 동시에, 페달 조작 여부를 확인할 수 있는 영상 촬영 및 저장 시스템을 제안한다. 개발된 차량 운행 정보 블랙박스는 블루투스 OBD2 커넥터를 통해 차량의 PID 값을 식별하고 수집한다. 이 데이터는 비동기 방식으로 처리되며, 라즈베리파이와 7인치 터치 디스플레이를 이용해 운전자에게 한눈에 보일 수 있는 형태로 정보를 제공한다. 특히, 멀티스레드를 활용하여 ECU 정보를 페달 조작 여부 영상에 표시하는 동시에 녹화하고, CSV 파일로 SD 카드에 실시간으로 저장한다. 수집된 차량 데이터와 영상 데이터는 예기치 못한 사고 발생 시 운전자의 과실 비율 측정과 대처행동을 입증하는 데 중요한 역할을 할 것으로 기대되며, 차량 정비 시 참고 자료로 활용될 수 있다.

  • PDF

An Establishment of Super Wi-Fi Environment in Ships Based on UHF System of TMS

  • Kim, Jungwoo;Son, Jooyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2103-2123
    • /
    • 2018
  • Ships built today are larger in scale and feature more complex structures. The ever-evolving systems used on board a ship require vast amounts of data processing. In the future, with the advent of smart ships, unmanned ships and other next-generation ships, the volumes of data to be processed will continue to increase. Yet, to date, ship data has been processed using wired networks. Placed at fixed locations, the nodes on wired networks often fail to process data from mobile devices. Despite many attempts made to use Wi-Fi on ships just as on land to create wireless networks, Wi-Fi has hardly been available due to the complex metal structures of ships. Therefore, Wi-Fi on ships has been patchy as the ship-wide total Wi-Fi coverage has not properly implemented. A new ship-wide wireless network environment is part of the technology conducive to the shipbuilding industry. The wireless network environment should not only serve the purpose of communication but also be able to manage and control multiple features in real-time: fault diagnostics, tracking, accident prevention and safety management. To better understand the characteristics of wireless frequencies for ships, this paper tests the widely used TETRA, UHF and Wi-Fi and sheds light on the features, advantages and disadvantages of each technology in ship settings. The proposed deployment of a Super Wi-Fi network leveraging the legacy UHF system of TMS generates a ship-wide wireless network environment. The experimental findings corroborate the feasibility of the proposed ship-wide Super Wi-Fi network environment.

A Study on the Improvement of Misfire Detection Method with Vibration by using the Weight Factor (후진동이 나타나는 실화 진단 방법에서 가중치를 이용한 성능 향상에 대한 연구)

  • Lim Jihoon;Lee Taeyeon;Kim Ealgoo;Hong Sungrul;Sung Jinho;Park Jaehong;Yoon Hyungjin;Park Jinseo;Kim Dongsun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.74-80
    • /
    • 2005
  • This paper presents a misfire monitoring method by using the weight factor. According to OBD II(On-Board Diagnostics) regulations of the CARB (California Air Resources Board), an ECU (Electronic Control Unit) should detect misfires which occur in the internal combustion engine. A misfire is 1311owe4 by post-oscillations for short duration. Sometimes, the amplitude of oscillations may be as high as misfire and can be falsely detected as another misfire. To prevent this, the software designers do not attempt to detect another misfire for this short duration, during which the post oscillations exist. Because of this, ECU does not detect all the misfires and hence, the unstable state of automobile cannot be detected. If this happens for a long time, automobile may get damaged. To solve these problems, this paper suggests a new algorithm to detect misfire by using weighting factor Weighting factor is a concept to distinguish the misfire with the post oscillation and to improve the detection rate. This value of weighting factor is used for counting the misfire. This paper also shows the result of experiment done on a automobile using this software. The software is implemented using ASCET-SD which is preferred in the design of engine control. This paper's result show the possibility of improving the misfire detection by implementing this algorithm.

Design and Implement a Smart Automobile Self-Diagnosis System based on The Driving information (자동차 주행정보를 활용한 스마트 자동차 자가 점검 시스템 설계 및 구현)

  • Kim, Min-Young;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2153-2159
    • /
    • 2013
  • In order to drive a vehicle safely, driver needs to check status of the car. Many moderns are having trouble to spare time to visit auto mechanic and have car mechanics to check their car other than their office hours. If the car status cannot be inspected regularly, it is likely to cause a big accident threatening the surroundings as well as driver's life. Inspection tool and system help driver to check their own vehicle status personally are required for preventing it. In this paper, it designed and realized system that records driving information based on changing data of vehicle (location and automotive internal data) and allows driver can check the vehicle status easily and further, driver can share the driving information with repair shop via the Internet to receive detailed inspection service for car status.

Research on Communication and The Operating of Server System for Vehicle Diagnosis and Monitoring (차량진단 및 모니터링을 위한 통신과 서버시스템 운용에 관한 연구)

  • Ryoo, Hee-Soo;Won, Yong-Gwan;Park, Kwon-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.6
    • /
    • pp.41-50
    • /
    • 2011
  • This article is concerned with the technology to provide car driver the car's status which are composed of car trouble code in car engine and many sensors. In addition, it installs vehicle diagnostic programs on wireless communication's portable device, for example, Smart phone, PDA, PMP, UMPC. As a result, this is to provide car manager with many information of car sensors when we go to car maintenance. it can monitor relevant information on vehicle by portable device in real time, alert drivers with specific messages and also enable them to address abnormalities immediately. Moreover, the technology could help the drivers who perhaps don't know very well about their vehicles to drive safely and economically as well; the reason is because the whole system is composed of just Vehicle-information collecting device and personal wireless communication's portables and transfers the relating data to server computers through wireless network in order to handle information on vehicles. This technology make us monitor vehicle's running, failure and disorder by using wireless communication's portable device. Finally, this study system is composed of a lot of application to display us the car's status which get car's inner sensor information while driving a car.