• Title/Summary/Keyword: Omnidirectional receiver

Search Result 12, Processing Time 0.017 seconds

An Omnidirectional Receiver for Visible Light Communication Using a Flexible Solar Cell (플렉시블 솔라셀을 이용한 전 방위 가시광 수신기)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.173-178
    • /
    • 2017
  • In this paper, we newly developed an omnidirectional receiver for visible light communication (VLC). The omnidirectional receiver was composed of a flexible solar cell attached on a cylindrical surface with its axis in vertical direction. The solar cell surface was symmetrical and showed an almost uniform receiving pattern in a horizontal plane. The maximum difference in a receiving pattern was within 7% of its peak value in a horizontal plane. This configuration is very easy to fabricate and useful in constructing wireless sensor networks in which one receiver needs to detect multiple LED signals in different directions.

Omnidirectional Resonator in X-Y Plane Using a Crisscross Structure for Wireless Power Transfer

  • Kim, Donggeon;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.194-198
    • /
    • 2015
  • Magnetic resonant coupling is more efficient than inductive coupling for transferring power wirelessly over a distance. However, a conventional resonant wireless power transfer (WPT) system requires a transmitter and receiver pair in exactly coaxial positions. We propose a resonator that can serve as an omnidirectional WPT system. A magnetic field will be generated by the current flowed through the transmitter. This magnetic field radiates omnidirectionally in the x-y plane because of the crisscross structure characteristic of the transmitter. The proposed resonator is demonstrated by using a single port. To check the received S21 and transfer efficiency, we moved the receiver around the transmitter at different distances (50-350 mm). As a result, the transmission efficiency is found to be 48%-54% at 200 mm.

Spherical Flux Concentration Transmitter for Omnidirectional Wireless Power Transfer with Improved Power Transmission Distance (전력전송거리 증가를 위한 구형 자속 집중 송신부 구조의 설계 및 해석)

  • Park, Kwang-Rock;Cha, Hwa-Rang;Kim, Rae-Young;Kim, Tae-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.181-187
    • /
    • 2020
  • In this study, we propose a spherical flux concentration structure for omnidirectional wireless power transfer. Omnidirectional wireless power transfer technology is a method that can transmit power to a transmitter located in an arbitrary position in a two-dimensional or three-dimensional space. However, to improve the power transfer distance in a wireless power transfer system, the diameter of the coil or the number of windings must increase, thereby increasing the size of the transmitter. The proposed transmitter structure adds a ferrite core inside the transmitter coil so that the magnetic flux generated by the transmitter is directed toward the position of the receiver. As a result, the flux linkage and the mutual inductance increase. By implementing the omnidirectional wireless power transfer system using the proposed structure, the power transfer distance can be improved by 65% compared with the conventional system without increasing the size of the transmitter. Simulation shows that the proposed spherical flux concentration structure increases the mutual inductance of the omnidirectional wireless power transmission system.

Omnidirectional Resonator in Three-Dimensional using a Globular Structure for Wireless Power Transfer (공 모양의 구조를 이용한 무선 전력 전송용 3차원 전 방향 공진기)

  • Kim, Donggeon;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.22-26
    • /
    • 2016
  • In this paper, using the globular structure designed and implemented for the transmitter and the receiver resonant wireless power transfer(WPT). The coil of the transmitter was proposed to emit a magnetic energy in three-dimensional space by winding a ball shape. Each side of the transmitter has been designed to obtain a high Q value by a spiral structure. This solves the problem that the transfer efficiency decreases rapidly depending on the location in the conventional WPT. The resonance frequency is used 6.78 MHz and the distance between the trasnitter and the receiver is 200 mm. The transfer efficiency of the proposed WPT system is higher than 40% at all direction.

A Study of 5G Systems to Improve Receiver Performance in the mmWave Band (밀리미터파 대역의 수신 성능을 개선하기 위한 5G 시스템에 대한 연구)

  • Myeong-saeng Kim;Dong-ok Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.362-368
    • /
    • 2024
  • In this paper, we investigated the performance of directional and omnidirectional precoding schemes when transmitting to improve downlink performance in massive MIMO. Omnidirectional precoding was used to broadcast a common signal, such as a synchronization or control signal, to all users. The main purpose of omnidirectional precoding is to design the precoding matrix so that the signal transmitted in the downlink is the same in all directions and emitted with maximum energy. We propose a flexible omnidirectional precoding method for full-dimensional massive MIMO that can set the spatial coverage range to less than 120 degrees. The constraints of omnidirectionality of all antennas, equal transmit power, and maximum transmit rate are used to design the encoding matrix of the proposed method. The performance was evaluated in terms of spatial coverage by considering changing the spatial coverage of the antenna array by changing the distance between neighboring antennas in the antenna array.

Multiple Visible Light Receiver Using A Flexible Solar Cell and Cds Cells (플렉시블 솔라셀과 Cds셀을 이용한 다중 가시광 수신기)

  • Lee, Seong-Ho
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.432-439
    • /
    • 2018
  • In this paper, an omnidirectional visible light detector was developed by making the detecting surface of a flexible solar cell in a cylindrical form, which has a uniform receiving pattern in the horizontal plane. This solar cell detector receives simultaneously multiple signal lights incident from different directions and provides electrical power to the ASK demodulator in the receiver. In experiments, time division transmission method was used to receive three signal lights incident from different directions to the solar cell detector. Each signal light was ASK modulated using a carrier of 40 kHz, and the synchronizing pulses required for time division transmission were generated by detecting the 120 Hz AC signal included in the indoor illumination lamp with Cds cells. This receiving structure is useful in constructing an $N{\times}1$ optical link in visible light communication.

NLOS Propagation Characteristics in a Curved Subway Tunnel (지하철 곡선 터널에서의 NLOS 전파 특성)

  • 정회동;윤찬의;강영진;송문규
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.322-325
    • /
    • 2003
  • In this paper, path loss characteristics in a curved subway tunnel are measured and analyzed. The measurement is carried out in the frequency bands of 2.45GHz and 5.8GHz. A directional antenna is employed for transmission and an omnidirectional antenna for reception. This measurement is performed in the subway tunnel in the vicinity of the Daejon station. The tunnel is curved and its cross section is arch-shaped. The path loss is measured with the location of the transmitter antenna fixed and the receiver antenna moving in the tunnel. The measured path loss ratio is about 0.1dBm/m. Also, the signal received from the antenna located on the outer side of curve in the tunnel experiences weaker path loss.

  • PDF

Implementation of Wireless Power Transfer Circuit by Using Magnetic Resonant Coupling Method

  • Lho, Young-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.306-309
    • /
    • 2019
  • Wireless charging is a technology of transmitting power through an air gap to an electrical load for the purpose of energy dissemination. Compared to traditional charging with code, wireless power charging has many benefits of avoiding the hassle from connecting cables, rendering the design and fabrication of much smaller devices without the attachment of batteries, providing flexibility for devices, and enhancing energy efficiency, etc. A transmitting coil and a receiving coil for inductive coupling or magnetic resonant coupling methods are available for the near field techniques, but are not for the far field one. In this paper, the wireless power transfer (WPT) circuit by using magnetic resonant coupling method with a resonant frequency of 13.45 Mhz for the low power system is implemented to measure the power transmission efficiency in terms of mutual distance and omnidirectional angles of receiver.

Model Experiments for Acoustic Propagation Characteristics in the Across Slope Direction of the Sloping Sea Bed (경사해저의 해안선 방향 음파 전달 특성에 관한 모형 실험)

  • Yoon, Jong-Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.52-60
    • /
    • 1991
  • Sound propagation in a sloping sea bed ocean environment demonstrates ray curvature in a direction parallel to the shoreline. The theoretical analysis of this shows that an ensonified region and a shadow region are formed, and their spatial extents depend on the spatial coordinates of source and receiver, a sloping angle and sourece frequency. The purpose of this experimental study using a sloping sea bed model is to check the theoretical prediction as a part of an ongoing investigation in the ocean environment. The sloping sea bed model used in this experiment had an ideal pressure-release boundaries and a sloping angle of $220.5{\circ}$ A single frequency signal and an impulsive signal were used as omnidirectional point sources. The spatial acoustic field characteristics in the across slope direction were measured using the former and the frequency dependent field characteristics in a specific point were obtained using the latter. It has been found that the analysis for the spatial extent of shadow zone and the frequency dependent field characteristics in the across slope direction, has a good agreement with the theoretical solution.

  • PDF

Active Shark Antenna for the Vehicle AM/FM/TDMB/GPS Receiver (자동차용 AM/FM/TDMB/GPS 통합 능동형 샤크 안테나)

  • Kim, Joo-Man;Son, Tae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.698-705
    • /
    • 2010
  • A vehicle antenna for AM, FM, TDMB, GPS systems was designed and implemented. Omnidirectional AM antenna was designed by ferrite turn style antenna. For the FM and TDMB antenna, folded monopole antenna which helical is folded was applied. GPS antenna for the bandwidth achievement was designed by trapezoidal microstrip patch that has air substrate. Receiving signal strengths by the measurement were presented for the AM, FM and TDMB antenna. AM signal strength was -65.7 dBm, this strength is almost as same conventional pole antenna as -63.4 dBm. It can be replaced conventional pole or glass antenna by the studied antenna. Signal strengths for FM and TDMB were -55.66 and -43.50 dBm at center frequency, they are 5~10 dB higher than conventional antenna. Measurements of bandwidth and gain for the GPS antenna showed 135 MHz under VSWR 2 : 1 and 4.31 dBi, gains over GPS band were 3~5 dB higher than ceramic patch antenna.