• 제목/요약/키워드: Omni-Wheeled Mobile Robot

검색결과 7건 처리시간 0.02초

여유구동을 지니는 전방향 모바일 로봇의 기구학 모델링 및 해석 (Kinematic Modeling and Analysis of Omni-Directional Mobile Robots with Redundant Actuation)

  • 이병주;김희국;양성일
    • 제어로봇시스템학회논문지
    • /
    • 제7권9호
    • /
    • pp.766-773
    • /
    • 2001
  • Omni-directional mobile robots have been popularly employed in several application areas. However, the kinematics for these systems have not been clearly identified, specially for redundantly actuated case which is common in omni-directional mobile robot such as the Nomadic model. For such mobile robot systems, exploitation of redundant actuation as well as singularity analysis has not been extensively addressed. In light of this fact, this paper introduces two different kinematic approaches for omni-directional mobile robots. Then, a singular-free load distribution scheme for redundantly actuated three-wheeled omni-directional mobile robot is proposed. Through simulation, several advantages of redundantly actuated mobile robot in aspect of singularity avoidance, minimization of torque norm, and exploiting several subtasks are presented.

  • PDF

메카넘휠 기반의 전방향 이동로봇 주행성능 평가 (Mobile Performance Evaluation of Mecanum Wheeled Omni-directional Mobile Robot)

  • 주백석;성영휘
    • 한국생산제조학회지
    • /
    • 제23권4호
    • /
    • pp.374-379
    • /
    • 2014
  • Mobile robots with omni-directional wheels can generate instant omni-directional motion without requiring extra space to change the direction of the body. Therefore, they are capable of moving in an arbitrary direction under any orientation even in narrow aisles or tight areas. In this research, an omni-directional mobile robot based on Mecanum wheels was developed to achieve omni-directionality. A CompactRIO embedded real-time controller and C series motion and I/O modules were employed in the control system design. Ultrasonic sensors installed on the front and lateral sides were utilized to measure the distance between the mobile robot and the side wall of a workspace. Through intensive experiments, a performance evaluation of the mobile robot was conducted to confirm its feasibility for industrial purposes. Mobility, omni-directionality, climbing capacity, and tracking performance of a squared trajectory were selected as performance indices to assess the omni-directional mobile robot.

Geometric Kinematics and Applications of a Mobile Robot

  • Kim, Dong-Sung;Kwon, Wook-Hyun;Park, Hong-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권3호
    • /
    • pp.376-384
    • /
    • 2003
  • In this paper, the simple geometric kinematics of a three-wheeled holonomic mobile robot is proposed. Wheel architecture is developed for the holonomic mobile platform in order to provide omni-directional motions by three individually driven and steered wheels. Three types of basic motions are proposed for the path generation of the developed mobile robot. All paths of the mobile robot can be achieved through a combination of the proposed basic motion trajectories. The proposed method is verified through computer simulations and the developed mobile robot.

바퀴/4 족 동작 전환으로 계단 및 문턱 오르기가 가능한 서비스 하이브리드 이동 로봇 개발 (Development of a Service Hybrid Mobile Robot for Climbing Stairs and Thresholds by Switching Wheel and Leg Gait)

  • 김진백;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제13권11호
    • /
    • pp.1082-1091
    • /
    • 2007
  • In this paper, we developed a new hybrid mobile robot which can climb stairs and go over thresholds by crawl gait with embedded real-time control software. This robot is also categorized into hybrid robot that has advantages of wheeled mobile robot and legged mobile robot, but adopts gait feature of crocodile named belly crawl. We imitated the belly crawl using four legs of 2 DOF, four omni-directional wheels, and embedded control software which controls legs and wheels. This software is developed using RTAI/Linux, real-time drivers. As a result, the new hybrid mobile robot has crawl gait. Using this feature, the new hybrid mobile robot can climb stairs and go over thresholds just by path planning of each leg with size of stairs and thresholds, and computing the movement distance of robot body center without considering stability. The performance of our new hybrid mobile robot is verified via experiments.

임피던스 제어와 적분 슬라이딩 모드 제어를 이용한 메카넘 휠 이동로봇의 강인한 궤도 추적 제어 (Robust Trajectory Tracking Control of a Mecanum Wheeled Mobile Robot Using Impedance Control and Integral Sliding Mode Control)

  • 우철민;이민욱;윤태성
    • 로봇학회논문지
    • /
    • 제13권4호
    • /
    • pp.256-264
    • /
    • 2018
  • Unlike normal wheels, the Mecanum wheel enables omni-directional movement regardless of the orientation of a mobile robot. In this paper, a robust trajectory tracking control method is developed based on the dynamic model of the Mecanum wheel mobile robot in order that the mobile robot can move along the given path in the environment with disturbance. The method is designed using the impedance control to make the mobile robot to track the path, and the integral sliding mode control for robustness to disturbance. The good performance of the proposed method is verified using the MATLAB /Simulink simulation and also through the experiment on an actual Mecanum wheel mobile robot. In both the simulation and the experimentation, we make the mobile robot move along a reference trajectory while maintaining the robot's orientation at a constant angle to see the characteristics of the Mecanum wheel.

정리정돈용 서비스 로봇 플랫폼의 구현 연구 (A Study on Implementation of Service Robot Platform for Mess-Cleanup)

  • 김승우;김하이준
    • 제어로봇시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.487-495
    • /
    • 2012
  • In this paper, a Smart Home Service Robot, McBot II, which performs mess-cleanup function etc. in house, is designed much more optimally than other service robots. It is newly developed in much more practical system than McBot I which we had developed two years ago. One characteristic attribute of mobile platforms equipped with a set of dependent wheels is their omni- directionality and the ability to realize complex translational and rotational trajectories for agile navigation in door. An accurate coordination of steering angle and spinning rate of each wheel is necessary for a consistent motion. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A specialized anthropomorphic robot manipulator which can be attached to the housemaid robot McBot II, is developed in this paper. This built-in type manipulator consists of both arms with 4 DOF (Degree of Freedom) each and both hands with 3 DOF each. The robotic arm is optimally designed to satisfy both the minimum mechanical size and the maximum workspace. Minimum mass and length are required for the built-in cooperated-arms system. But that makes the workspace so small. This paper proposes optimal design method to overcome the problem by using neck joint to move the arms horizontally forward/backward and waist joint to move them vertically up/down. The robotic hand, which has two fingers and a thumb, is also optimally designed in task-based concept. Finally, the good performance of the developed McBot II is confirmed through live tests of the mess-cleanup task.

스마트 웰니스 로봇 플랫폼 개발에 관한 연구 (A Study on Development of a Smart Wellness Robot Platform)

  • 이병수;김승우
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.331-339
    • /
    • 2016
  • 본 논문에서는 노령화 사회에서 노인들의 기본 건강과 생활을 케어 할 수 있는 홈 웰니스 로봇 플랫폼을 개발한다. 실내 환경에서 웰니스 서비스에 초점을 맞추어 로봇 및 센서 플랫폼을 구현한다. 로봇플랫폼에서는 정밀제어 이동기능과 정교한 로봇 팔 및 핸드를 개발하고 인간친화형 로봇구조로 설계되어진다. 이동로봇은 옴니휠 기반의 쾌속 시스템으로 제어된다. 로봇팔은 섬세한 조작기능을 수행할 수 있도록 인간의 팔과 유사한 구조로 구현한다. 센서 플랫폼에서는 RF태그와 스테레오 카메라를 활용하여 로봇자신과 대상물체의 위치 인식시스템을 구축한다. 정확한 위치와 자세 인식을 위하여 센서 융합 알고리즘이 제안된다. 끝으로 웰니스 로봇 플랫폼의 좋은 성능들이 실시간 시험 구동을 통하여 확인되어 진다.