• Title/Summary/Keyword: Omni-Wheel

Search Result 43, Processing Time 0.032 seconds

Odometry and Navigation of an Omni-directional Mobile Robot with Active Caster Wheels (구동 캐스터 바퀴를 이용한 전방향 모바일 로봇의 오도메트리와 내비게이션)

  • Jung, Eui-Jung;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1014-1020
    • /
    • 2009
  • This work deals with navigation of an omni-directional mobile robot with active caster wheels. Initially, the posture of the omni-directional mobile robot is calculated by using the odometry information. Next, the position accuracy of the mobile robot is measured through comparison of the odometry information and the external sensor measurement. Finally, for successful navigation of the mobile robot, a motion planning algorithm that employs kinematic redundancy resolution method is proposed. Through experiments for multiple obstacles and multiple moving obstacles, the feasibility of the proposed navigation algorithm was verified.

Optimal Path Planning and Control of Omni-directional Autonomous Mobile Robot (전 방향 자율이동로봇의 최적 경로탐색 및 제어)

  • Hwang, Jong-Woo;Lee, Yong-Gu;Lee, Hyunk-Wan;Eom, Ki-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.945-946
    • /
    • 2006
  • There are some difficulties to track an object with one-axis two-wheel drive method. When one-axis two-wheel drive robot wants to approach to the object, it should turn direction of the robot. At this time, direction of camera also would be changed. In this paper, we introduce omni-directional driving system that can move freely without turning the robot body, and propose the optimal approaching method.

  • PDF

Robust Trajectory Tracking Control of a Mecanum Wheeled Mobile Robot Using Impedance Control and Integral Sliding Mode Control (임피던스 제어와 적분 슬라이딩 모드 제어를 이용한 메카넘 휠 이동로봇의 강인한 궤도 추적 제어)

  • Woo, Cheolmin;Lee, Min-uk;Yoon, Tae-sung
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.256-264
    • /
    • 2018
  • Unlike normal wheels, the Mecanum wheel enables omni-directional movement regardless of the orientation of a mobile robot. In this paper, a robust trajectory tracking control method is developed based on the dynamic model of the Mecanum wheel mobile robot in order that the mobile robot can move along the given path in the environment with disturbance. The method is designed using the impedance control to make the mobile robot to track the path, and the integral sliding mode control for robustness to disturbance. The good performance of the proposed method is verified using the MATLAB /Simulink simulation and also through the experiment on an actual Mecanum wheel mobile robot. In both the simulation and the experimentation, we make the mobile robot move along a reference trajectory while maintaining the robot's orientation at a constant angle to see the characteristics of the Mecanum wheel.

Robot Techologies in Response to Accidents in Nuclear Power Plants

  • Kim, Seungho;Jung, Kyung-Min;Kim, Chang-Hoi;Seo, Yong-Chil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.43.6-43
    • /
    • 2002
  • $\textbullet$ KAEROT/m1 with an omni-directional planetary wheel mechanism for the narrow corridor. $\textbullet$ KAEROT/m2 can pass over the ditch with specially designed four wheel of a re-configurable crawler. $\textbullet$ Stereo imaging system with master manipulator enhancing the tele-presence. $\textbullet$ Small hybrid dosimeter detecting radiation dose and dose rate simultaneously.

  • PDF

An Experimental Study on Control and Development of an Omni-directional Mobile Robot (전방향 이동로봇의 제작과 제어에 관한 실험연구)

  • Lee, Jeong Hyung;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.412-417
    • /
    • 2014
  • This paper presents the development and control of an omni-directional holonomic mobile robot platform, which is equipped with three lateral orthogonal-wheel assemblies. Omni-directionality can be achieved with decoupled rotational and translational motions. Simulation studies on collision avoidance are conducted. A real robot is built and its hardware is implemented to control the robot. Control algorithm is embedded on DSP and FPGA chips. Hardware for motor control such as PWM, encoder counter, serial communication modules is implemented on an FPGA chip. Experimental studies of following joystick commands are performed to demonstrate the functionality and controllability of the robot.

Travel Control of a Spherical Wheeled Robot (Ball-Bot) with Mecanum Wheel (메카넘휠을 적용한 구형바퀴로봇(볼-봇)의 주행제어)

  • Seo, Beomseok;Park, Jong-Eun;Park, Jee-Seol;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.713-717
    • /
    • 2014
  • In this paper, the travel control of the spherical wheeled robot with a mecanum wheel is impelemented. Four typical wheels or three omni wheels are used to consist of the ball-bot. the slip is occured when the typical wheels is used to the ball-bot. In order to reduce these slip, the spherical wheeled robot with macanum wheels is proposed. Through some experiments, we find that the proposed spherical wheeled robot with a mecanum wheel is superior to the conventional spherical wheeled robot with typical wheels.

Unified-type Design and Structural Analysis for Mecanum Wheel Performance Improvement (메카넘휠 성능개선을 위한 일체형 설계 및 구조해석)

  • Jeong, Jeaung;Kwon, Soon-Jae;Chu, Baeksuk;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.117-123
    • /
    • 2014
  • In order to provide a mobile robot with omnidirectionality, various types of omnidirectional wheels have been developed. This paper deals with an improved design and structural analysis of a Mecanum wheel, which is the type of omnidirectional wheels most commonly used in industrial fields. A geometric formulation for manufacturingthe Mecanum wheel is presented and two types of Mecanum wheels are designed and fabricated in this research. While conventional assembled-type Mecanum wheels have a complicated structure and the high possibility of mutual interference between sub-components, a unified type of Mecanum wheel reduces the number of sub-components and increases the degree of structural rigidity. The stress and strain properties of the two designs are compared to confirm the quantitative improvement of the new design by a commercial structural analysis tool. The analysis results show that the unified type of Mecanum wheel has properties superior to the assembled type of Mecanum wheel in terms of its ability to reduce interference.

Control of an Omni-directional Mobile Robot Based on Camera Image (카메라 영상기반 전방향 이동 로봇의 제어)

  • Kim, Bong Kyu;Ryoo, Jung Rae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.84-89
    • /
    • 2014
  • In this paper, an image-based visual servo control strategy for tracking a target object is applied to a camera-mounted omni-directional mobile robot. In order to get target angular velocity of each wheel from image coordinates of the target object, in general, a mathematical image Jacobian matrix is built using a camera model and a mobile robot kinematics. Unlike to the well-known mathematical image Jacobian, a simple rule-based control strategy is proposed to generate target angular velocities of the wheels in conjunction with size of the target object captured in a camera image. A camera image is divided into several regions, and a pre-defined rule corresponding to the target-located image region is applied to generate target angular velocities of wheels. The proposed algorithm is easily implementable in that no mathematical description for image Jacobian is required and a small number of rules are sufficient for target tracking. Experimental results are presented with descriptions about the overall experimental system.

Variable Wheel Position Mechanism with Full Mobility for a Car-Like Robot (자동차 로봇의 휠 배치 가변 구조 연구)

  • Kim, Sun-Wook;Jung, Hah-Min;Kim, Hong-Pil;Lee, Se-Han;Kim, Dong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2251_2252
    • /
    • 2009
  • In this paper, an attempt has been made by incorporating variable wheel arrangement for a car-like robot. In this scheme, the car-like robot controls its body height and the length of forward and backward wheels while driving in omni-direction. Experimental results show that the proposed car-like robot with wheel arrangement variable structure presents effectiveness of several situations.(a. left and right turn, b. longitudinal and latitudinal parking, c. control of body height and the length of forward and backward wheels, d. passing over obstacles, e. adaptive cruise control.)

  • PDF

A Study on a Robot for Moving a Double-parked Car (이중 주차된 차량을 이동하기 위한 로봇에 관한 연구)

  • Kim, Min-Chan;Sung, Young Whee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.233-244
    • /
    • 2020
  • A double-parked car is the one that is parked in a crowded parking lot with its transmission gear in neutral position and its auxiliary brake released. A double-parked car can be moved by pushing it but doing so is very difficult and dangerous. In a previous study, we proposed an omni-directional mobile robot for moving a double parked car. In that study we adopted Mecanum wheels. Even though the proposed robot showed successful results, it has some drawbacks such as dependency on a load condition, complexity in control, inefficiency in power use, etc. To overcome those drawbacks, we propose a differential drive robot with ordinary two tire wheels. The proposed robot consists of two parts, one is a wheel part and the other is a body part. By selectively connecting or disconnecting those two parts with the aid of an electric brake, the proposed robot is able to have omni-directional mobility.