• Title/Summary/Keyword: Omni Directional

Search Result 355, Processing Time 0.026 seconds

Omni Camera Vision-Based Localization for Mobile Robots Navigation Using Omni-Directional Images (옴니 카메라의 전방향 영상을 이용한 이동 로봇의 위치 인식 시스템)

  • Kim, Jong-Rok;Lim, Mee-Seub;Lim, Joon-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.206-210
    • /
    • 2011
  • Vision-based robot localization is challenging due to the vast amount of visual information available, requiring extensive storage and processing time. To deal with these challenges, we propose the use of features extracted from omni-directional panoramic images and present a method for localization of a mobile robot equipped with an omni-directional camera. The core of the proposed scheme may be summarized as follows : First, we utilize an omni-directional camera which can capture instantaneous $360^{\circ}$ panoramic images around a robot. Second, Nodes around the robot are extracted by the correlation coefficients of Circular Horizontal Line between the landmark and the current captured image. Third, the robot position is determined from the locations by the proposed correlation-based landmark image matching. To accelerate computations, we have assigned the node candidates using color information and the correlation values are calculated based on Fast Fourier Transforms. Experiments show that the proposed method is effective in global localization of mobile robots and robust to lighting variations.

A Study on an Omni-directional Mobile Robot for Moving a Double-parked Car (이중 주차된 차량 이동용 전방향 이동 로봇에 대한 연구)

  • Yoon, Kyung Su;Lee, Myung Sub;Sung, Yount Whee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.440-447
    • /
    • 2018
  • Double parking is very common in a parking lot where there is not sufficient parking space. When we double-park a car, we leave transmission gear in neutral position and release the emergency brake so that the double-parked car can be moved just by pushing it. However, moving a double-parked car by pushing is very hard and dangerous especially for the old and the weak. So, we propose an omni-directional mobile robot for moving a double-parked car easily and safely. The developed omni-directional mobile robot moves a double-parked car by rotating a wheel of a double-parked car. It has two specially designed rollers to rotate a wheel of a double-parked car and is designed so that the height of the robot is very low to be able to enter beneath a double-parked car. It can move a double-parked car safely by detecting obstacles in the way with five ultrasonic sensors. We verified by several experiments that the developed omni-directional mobile robot can be used to move a double-parked car easily and safely.

Self-localization for Mobile Robot Navigation using an Active Omni-directional Range Sensor (전방향 능동 거리 센서를 이용한 이동로봇의 자기 위치 추정)

  • Joung, In-Soo;Cho, Hyung-Suck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.253-264
    • /
    • 1999
  • Most autonomous mobile robots view only things in front of them, and as a result, they may collide with objects moving from the side or behind. To overcome this problem. an Active Omni-directional Range Sensor System has been built that can obtain an omni-directional range data through the use of a laser conic plane and a conic mirror. Also, mobile robot has to know its current location and heading angle by itself as accurately as possible to successfully navigate in real environments. To achieve this capability, we propose a self-localization algorithm of a mobile robot using an active omni-directional range sensor in an unknown environment. The proposed algorithm estimates the current position and head angle of a mobile robot by a registration of the range data obtained at two positions, current and previous. To show the effectiveness of the proposed algorithm, a series of simulations was conducted and the results show that the proposed algorithm is very efficient, and can be utilized for self-localization of a mobile robot in an unknown environment.

  • PDF

Tolerance Analysis and Compensation Method Using Zernike Polynomial Coefficients of Omni-directional and Fisheye Varifocal Lens

  • Kim, Jin Woo;Ryu, Jae Myung;Kim, Young-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.720-731
    • /
    • 2014
  • There are many kinds of optical systems to widen a field of view. Fisheye lenses with view angles of 180 degrees and omni-directional systems with the view angles of 360 degrees are recognized as proper systems to widen a field of view. In this study, we proposed a new optical system to overcome drawbacks of conventional omni-directional systems such as a limited field of view in the central area and difficulties in manufacturing. Thus we can eliminate the undesirable reflection components of the omni-directional system and solve the primary drawback of the conventional system. Finally, tolerance analysis using Zernike polynomial coefficients was performed to confirm the productivity of the new optical system. Furthermore, we established a method of optical axis alignment and compensation schemes for the proposed optical system as a result of tolerance analysis. In a sensitivity calculation, we investigated performance degradation due to manufacturing error using Code V(R) macro function. Consequently, we suggested compensation schemes using a lens group decentering. This paper gives a good guidance for the optical design and tolerance analysis including the compensation method in the extremely wide angle system.

Position Control Algorithm and Experimental Evaluation of an Omni-directional Mobile Robot (전방향 이동로봇 위치제어 알고리즘과 실험적 검증)

  • Chu, Baeksuk;Cho, Gangik;Sung, Young Whee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.141-147
    • /
    • 2015
  • In this study, a position control algorithm for an omni-directional mobile robot based on Mecanum wheels was introduced and experimentally evaluated. Multiple ultrasonic sensors were installed around the mobile robot to obtain position feedback. Using the distance of the robot from the wall, the position and orientation of the mobile robot were calculated. In accordance with the omni-directional velocity generation mechanism, the velocity kinematics between the Mecanum wheel and the mobile platform were determined. Based on this formulation, a simple and intuitive position control algorithm was suggested. To evaluate the control algorithm, a test bed composed of artificial walls was designed and implemented. While conventional control algorithms based on normal wheels require additional path planning for two-dimensional planar motion, the omni-directional mobile robot using distance sensors was able to directly follow target positions with the simple proposed position feedback algorithm.

Coordinate Calibration and Object Tracking of the ODVS (Omni-directional Image에서의 이동객체 좌표 보정 및 추적)

  • Park, Yong-Min;Nam, Hyun-Jung;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.408-413
    • /
    • 2005
  • This paper presents a technique which extracts a moving object from omni-directional images and estimates a real coordinates of the moving object using 3D parabolic coordinate transformation. To process real-time, a moving object was extracted by proposed Hue histogram Matching Algorithms. We demonstrate our proposed technique could extract a moving object strongly without effects of light changing and estimate approximation values of real coordinates with theoretical and experimental arguments.

  • PDF

Moving Target Tracking using Vision System for an Omni-directional Wheel Robot (전방향 구동 로봇에서의 비젼을 이용한 이동 물체의 추적)

  • Kim, San;Kim, Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1053-1061
    • /
    • 2008
  • In this paper, a moving target tracking using a binocular vision for an omni-directional mobile robot is addressed. In the binocular vision, three dimensional information on the target is extracted by vision processes including calibration, image correspondence, and 3D reconstruction. The robot controller is constituted with SPI(serial peripheral interface) to communicate effectively between robot master controller and wheel controllers.

Geometry Design of Omni-directional Mecanum Wheel (전방향 운동용 메카넘 바퀴의 기하학적 설계)

  • 신동헌;이인태
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.11-17
    • /
    • 1998
  • The mecanum wheel was originaly developed in sweden to realize the omni-directional motion of the cart. The circumference of each wheel is lined with rollers set at 45 degrees relative to the main wheel. This paper proves that the roller of the mecanum wheel shapes the ellipsoid, derives the kinematic relationships between the parameters of the wheel and rollers, and proposes the procedure to determine the parameters of the wheel. The result was implemented into the computer program for the design of the mecanum wheel.

  • PDF

Two-Dimensional Depth Data Measurement using an Active Omni-Directional Range Sensor (전방향 능동 거리 센서를 이용한 2차원 거리 측정)

  • Joung, In-Soo;Cho, Hyung-Suck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.437-445
    • /
    • 1999
  • Most autonomous mobile robots view only things in front of then, and as a result, they may collide with objects moving from the side or behind. To overcome this problem, an active omni-directional range sensor system has been built that can obtain an omni-directional depth map through the use of a laser conic plane and a conic mirror. In the navigation of the mobile robot, the proposed sensor system produces a laser conic plane by rotating the laser point source at high speed: this creates a two-dimensional depth map, in real time, once an image is captured. The results obtained from experiment show that the proposed sensor system is very efficient, and can be utilized for navigation of mobile robot in an unknown environment.

  • PDF

Simultaneous path tracking and orientation control for three-wheeled omni-directional robots (삼륜형 전방향 이동로봇을 위한 경로추종 및 방위제어)

  • Choi, Han-Soo;Kim, Dong-Il;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.3
    • /
    • pp.154-161
    • /
    • 2015
  • Conventional path tracking methods designed for two-wheeled differential drive robots are not suitable for omni-directional robots. In this study, we present a controller which can accomplish more accurate path tracking and orientation correction by exploiting the unconstrained movement capability of omni-directional robots. The proposed controller is proven to be stable using a Lyapunov stability criterion. Various experiments in real environments show that performance of path tracking and orientation correction has improved in the proposed controller.