• Title/Summary/Keyword: Olivine structure

Search Result 31, Processing Time 0.039 seconds

Effect of ball-milling condition on electrochemical properties of $LiFePO_4-C$ cathode materials

  • Jin, Bo;Jin, En-Mei;Park, Kyung-Hee;Park, Bok-Kee;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.338-338
    • /
    • 2007
  • $LiFePO_4-C$ cathode materials were prepared by hydrothermal reaction and ball-milling. In order to enhance the electronic conductivity of $LiFePO_4$, 10% of acetylene black was added. During the ball-milling, different revolutions per minute (100, 200 and 300 rpm) was carried out. The structural and morphological performance of $LiFePO_4-C$ powders were characterized by X-ray diffraction and scanning electron microscope. The X-ray diffraction results demonstrated that $LiFePO_4-C$ powders had an orthorhombic olivine-type structure with a space group of Pnma. $LiFePO_4-C$ batteries were characterized electrochemically by charge/discharge experiments. The charge/discharge experiments indicated that $LiFePO_4-C$/Li batteries by 300 rpm of the ball-milling exhibited the best electrochemical performance with the discharge capacity of 126mAh/g at a discharge rate of $0.1mA/cm^2$.

  • PDF

Structural, Paleomagnetic and Petrological Studies of the Chugaryeong Rift Valley (추가령(標哥嶺) 지구대(地構帶)의 지질구조(地質構造), 고지자기(古地磁氣) 및 암석학적(岩石學的) 연구(硏究))

  • Kim, Kyu Han;Kim, Ok Joon;Min, Kyung Duck;Lee, Youn Soo
    • Economic and Environmental Geology
    • /
    • v.17 no.3
    • /
    • pp.215-230
    • /
    • 1984
  • Petrological, paleomagnetic, geomorphological and structural studies on the southern part of, so called, Chugaryeong rift valley, have been carried out in order to clarify the nature of the rift valley. Three stages of volcanic activities characterized by Jijangbong acidic volcanic rocks and tholeiitic and andesitic basalt of Cretaceous age(?), and Jongok Quaternary olivine basalt occurred along the Dongducheon fault line. Jijangbong acidic volcanic rocks distributed in the central part of the studied area consist of rhyodacite, acidic tuff and tuff breccia, which are bounded by Dongsong fault on the east and Daegwangri fault on the west. The Jongok basalt differs from those of Ulrung and Jeju islands in mineralogy, chemical composition and differentiation. Jongok basalt distributed along the Hantan river dilineates the vesicles curved toward downstream direction and increment of numbers and thickness of lava flow toward upstream direction. These facts suggest that lava flowed from upstream side of the river. Rectangular drainage patterns also support the presence of the Dongducheon, Pocheon, Wangsukcheon and Kyonggang faults which were previously known. LANDSAT image, however, does not show any lineaments which could be counted as a graben or rift valley. Displacement of Precambrian quartzite and Jurassic Daedong supergroup along the southwestern extension of the Dongducheon fault shows the right lateral movement. The Paleomagnetic study of the tholeiitic and andesitic basalts from Baegeuri, Jangtanri and Tonghyeonri located at 2. 3km east, 0km east, and 1.5km west of Dongducheon fault respectively shows that their VGP(Virtual Geomagnetic Pole) being to intermediate geomagnetic field of short duration which suggests that they formed in almost same period. Mean VGP of Jongok basalt is located 82.4N and 80.6E. This is in good coincidence with worldwide VGP of Plio-Pleistocene indicating that Jongok basalt was extruded during Plio-Pleistocene epoch, and suggesting that the studied area has been tectonically stable since then. From the present study, the tectonic episode of the region is concluded as following three stages. 1. The 1st period is worked by the Daebo orogeny of Jurassic during which granodiorite was intruded in Precambrian basement. 2. The 2nd period is the time when right lateral strike-slip fault of NNE-SSW direction was formed probably during late Cretaceous to Paleogene and the Jijangbong acidic volcanic rocks and the older basalts were extruded. 3. The 3rd period is the time when the fault was rejuvenated during Pliocene or Pleistocene accompanied by the eruption of Jongok basalt. As a conclusion, geologic structure of the studied area is rather fault line valley than graben or rift valley, which is formed by differential erosion along the Dongducheon fault suggesting a continuation of the Sikhote-Alin fault. The volcanic rocks including the Jijangbong acidic rocks, tholeiitic-andesitic basalt and olivine basalt are associated with this fault line.

  • PDF

Studies on Crystallographic and Mossbauer Spectra of the LiFe0.9Mn0.1PO4 (LiFe0.9Mn0.1PO4 물질의 결정구조 및 뫼스바우어 분광 연구)

  • Kwon, Woo-Jun;Lee, In-Kyu;Rhee, Chan-Hyuk;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.1
    • /
    • pp.15-18
    • /
    • 2012
  • The olivine structured $LiFe_{0.9}Mn_{0.1}PO_4$ material was prepared by solid state method, and was analyzed by x-ray diffractometer (XRD), superconducting quantum interference devices (SQUID) and Mossbauer spectroscopy. The crystal structure of $LiFe_{0.9}Mn_{0.1}PO_4$ was determined to be orthorhombic (space group: Pnma) by Rietveld refinement method. The value of N$\acute{e}$el temperature ($T_N$) for $LiFe_{0.9}Mn_{0.1}PO_4$ was determined 50 K. The temperature dependence of the magnetization curves showed magnetic phase transition from paramagnetic to antiferromagnetic at $T_N$ by SQUID measurement. M$\ddot{o}$ssbauer spectra of $LiFe_{0.9}Mn_{0.1}PO_4$ showed 2 absorption lines at temperatures above $T_N$ and showed asymmetric 8 absorption lines at temperatures below $T_N$. These spectra occurred due to the magnetic dipole and electric quardrupole interaction caused by strong crystalline field at asymmetric $FeO_6$ octahedral sites.

The Effect of Synthesis Conditions on the Electrochemical Properties of LiFePO4 for Cathode Material of Secondary Lithium Ion Batteries (리듐 2차 전지용 약극활물질 LiFePO4의 합성 조건에 다른 전기화학적 특성)

  • Kim, Do-Gyun;Park, Hyun-Min;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.121-125
    • /
    • 2006
  • [ $LiFePO_4$ ] is one of the promising materials for cathode material of secondary lithium batteries due to its high energy density, low cost, environmental friendliness and safety. $LiFePO_4$ was synthesized by the solid-state reaction method at 500 - 800°C. The crystal structure of $LiFePO_4$ was analyzed by X-ray powder diffraction. The samples synthesized at 600 and $700^{\circ}C$ showed a single phase of a olivine structure. The particle sizes were increased and the specific surface areas were decreased with heating temperatures. The electrochemical performance was investigated by coin cell test. The discharge capacities at 0.1 C-rate were 118 mAh/g and 112 mAh/g at $600^{\circ}C,\;700^{\circ}C$, respectively. In an attempt to improve the electrical conductivity of cathode materials, $LiFePO_4/graphite$ composite was prepared with various graphite contents. The electrical conductivity and discharge capacity were increased with increasing the graphite contents in composite samples. The rate capabilities at high current densities were also improved.

Sedimentological Study of Littoral Beach Sand in Busan Area, South Korea (부산일원(釜山一圓) 연안해빈사(沿岸海賓砂)의 퇴적학적(堆積學的) 연구(硏究))

  • Lee, You Dae;Choi, Kwang Sun
    • Economic and Environmental Geology
    • /
    • v.16 no.2
    • /
    • pp.65-78
    • /
    • 1983
  • This report deals with the sedimentological study of the littoral sand of beaches in the Busan area. The purpose of this report is to know the grain size, mineralogical composition, heavy mineral and clay mineral of the beach sands, and gravity measurements of the Nagdong River Deltas. 1) As a whole, the littoral sand of the beaches are composed of uniformly medium grained, moderately sorted and nearly symmetrical. The barrier sand of the Nagdong Estuary is composed of fine grained, well sorted and nearly symmetrical. 2) The littoral sand of the beaches is transported by saltation and rolling. The barrier sand of the Nagdong Estuary is transported by suspension and saltation. 3) In the littoral sand of the beaches, the ratio of feldspar to quartz is 1 :2.31 and in the barrier sand of the Nagdong Estuary 1:1.40. 4) The content of heavy mineral of samples ranges from 0.54 to 3.87 %. The principal heavy minerals are hornblende, pyroxene, epidote, garnet, leucoxene, zircon, apatite, magnetite, hematite and ilmenite with minor accessories of rutile and olivine. 5) The x-ray diffraction analysis of the clay mineral informs the existence of quartz, feldspar, kaolinite and montmorillonite. The montmorillonite is considered to have been derived from the alteration of acidic volcanic rocks. 6) To determine the depositional structure of the Nagdong Estuary, Gravity measurements were made. Free air anomaly ranges from 14.5 mgal to 33.5 mgal and Bouguer anomaly ranges from 14.3 to 23.5 mgal and both are closely related to the topography. According to the interpreted layer structure, the upper layer composing sand, silt and clay, the intermediate layer composing sand with gravel, the lower layer composing weathered and soft rock, and bed rock composing hornfels or andesite. 7) The depositional environments of the study, the littoral area is dominated by the marine environment and the Nagdong Estuary by the mixed environment.

  • PDF

Development of Electrode Materials for Li-Ion Batteries and Catalysts for Proton Exchange Membrane Fuel Cells (리튬 이차전지용 전극 및 연료전지 촉매 소재 연구 개발 동향)

  • Yun, Hongkwan;Kim, Dahee;Kim, Chunjoong;Kim, Young-Jin;Min, Ji Ho;Jung, Namgee
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.388-405
    • /
    • 2018
  • In this paper, we review about current development of electrode materials for Li-ion batteries and catalysts for fuel cells. We scrutinized various electrode materials for cathode and anode in Li-ion batteries, which include the materials currently being used in the industry and candidates with high energy density. While layered, spinel, olivine, and rock-salt type inorganic electrode materials were introduced as the cathode materials, the Li metal, graphite, Li-alloying metal, and oxide compound have been discussed for the application to the anode materials. In the development of fuel cell catalysts, the catalyst structures classified according to the catalyst composition and surface structure, such as Pt-based metal nanoparticles, non-Pt catalysts, and carbon-based materials, were discussed in detail. Moreover, various support materials used to maximize the active surface area of fuel cell catalysts were explained. New electrode materials and catalysts with both high electrochemical performance and stability can be developed based on the thorough understanding of earlier studied electrode materials and catalysts.

Petrochemical study on the Daejeon-sa basalt in the Mt. Juwang area, Cheongsong (청송 주왕산지역 대전사 현무암의 암석화학적 연구)

  • 윤성효;이문원;고정선;김영라;안지영
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.84-98
    • /
    • 2000
  • Daejeon-sa basalt in the Mt. Juwang area composed of 12 basalt flows alternate with 9 peperites and each basalt and peperite has the variety of thickness. Peperites yielded in Daejeon-sa basalt are mixed of basalt with reddish shale, of which textural type is globular peperite. Basalts yielded in Daejeon-sa basalt are massive basalt without vesicule, although sometimes vesicules are founded in upper within a flow unit. The basalt has mainly pseudomorph of olivine as phenocryst, and also plagioclase and clinopyroxene phenocryst. Matrix is mainly subophitic texture. The plotting result on the TAS diagram shows these basalts belong to the sub-alkaline, and it can be subdivided into calc-alkaline series on the basis of the diagram of Si02 vs. K20 and of alkali index vs. A1203 diagram. According to plots of wt.% oxides vs. wt.% MgO, abundances of A1203 and CaO increase with decreasing MgO while F ~ dOecre~ase . With decreasing MgO compatible elements decrease while incompatible elements increase. In spider diagram of MORB-normalized trace element patterns, HFS elements are nearly similiar with MORB, but LIL elements are enriched. Especially, contents of Ce, F: and Sm are enriched but Nb is depleted. In the chondrite-normalized REE patterns light REEs are enriched than heavy REEs. Tectomagmatic discrimination diagrams shows basalts in the study area are formed in the tectonomagmatic environment of subduction zone under continental margin. This result accord with characters of chemical composition mentioned above. Cr vs. Y diagram and CeM, vs. Ce diagram show that the primary magma of the basalts may formed by the about 15% partial melting of garnet-peridotite in the mantle wedge. After then, Daejeon-sa basalts may formed from evolved magma undergone mainly olivine fractional crystallization and contarnination of crustal materials before eruption.

  • PDF

Nano-scale Design of electrode materials for lithium rechargeable batteries

  • Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.72-72
    • /
    • 2012
  • Lithium rechargeable batteries have been widely used as key power sources for portable devices for the last couple of decades. Their high energy density and power have allowed the proliferation of ever more complex portable devices such as cellular phones, laptops and PDA's. For larger scale applications, such as batteries in plug-in hybrid electric vehicles (PHEV) or power tools, higher standards of the battery, especially in term of the rate (power) capability and energy density, are required. In PHEV, the materials in the rechargeable battery must be able to charge and discharge (power capability) with sufficient speed to take advantage of regenerative braking and give the desirable power to accelerate the car. The driving mileage of the electric car is simply a function of the energy density of the batteries. Since the successful launch of recent Ni-MH (Nickel Metal Hydride)-based HEVs (Hybrid Electric Vehicles) in the market, there has been intense demand for the high power-capable Li battery with higher energy density and reduced cost to make HEV vehicles more efficient and reduce emissions. However, current Li rechargeable battery technology has to improve significantly to meet the requirements for HEV applications not to mention PHEV. In an effort to design and develop an advanced electrode material with high power and energy for Li rechargeable batteries, we approached to this in two different length scales - Atomic and Nano engineering of materials. In the atomic design of electrode materials, we have combined theoretical investigation using ab initio calculations with experimental realization. Based on fundamental understanding on Li diffusion, polaronic conduction, operating potential, electronic structure and atomic bonding nature of electrode materials by theoretical calculations, we could identify and define the problems of existing electrode materials, suggest possible strategy and experimentally improve the electrochemical property. This approach often leads to a design of completely new compounds with new crystal structures. In this seminar, I will talk about two examples of electrode material study under this approach; $LiNi_{0.5}Mn_{0.5}O_2$ based layered materials and olivine based multi-component systems. In the other scale of approach; nano engineering; the morphology of electrode materials are controlled in nano scales to explore new electrochemical properties arising from the limited length scales and nano scale electrode architecture. Power, energy and cycle stability are demonstrated to be sensitively affected by electrode architecture in nano scales. This part of story will be only given summarized in the talk.

  • PDF

A Study on the Fundamental Properties of Mortar Mixed with Converter Slag and Ferronickel Slag (전로슬래그 및 페로니켈슬래그를 혼입한 모르타르의 기초물성 연구)

  • Kim, Ji-Seok;Park, Eon-Sang;Ann, Ki-Yong;Cho, Won-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.152-160
    • /
    • 2021
  • Converter steel slag(BOF slag) is a vast amount of solid waste generated in the steelmaking process which has very low utilization rate in Korea. Due to the presence of free CaO which can derive bad volume stability in BOF slag, it usually land filled. For recycling BOF and identify its applicability as fine aggregate, this study investigates the fundamental characteristics of mortar with cement replaced ferronickel slag(FNS), which has the potential to be used as a binder. The results suggest that the mineral phases of BOF slag mainly include larnite(CaSiO4), mayenite(Ca12Al14O33) and wuestite(FeO) while olivine crystallines are shown in FNS. The results of flow and setting time reveals that the flowability and process of hardening increased when the amount of FNS and BOF slag incorporated was increased. The length change shows that the amount of change in the length of the mortar was almost constant regardless of mix proportion while compressive strength was reduced. Micro structure test results revealed that FNS or/and BOF slag mix took a long time to react in the cement matrix to form a complete hydration products. To achieve the efficient utilization of B OF slag as construction materials, proper replacement rate is necessary.

Study on LiFePO4 Composite Cathode Materials to Enhance Thermal Stability of Hybrid Capacitor (하이브리드 커패시터의 열안정성 개선을 위한 LiFePO4 복합양극 소재에 관한 연구)

  • Kwon, Tae-Soon;Park, Ji-Hyun;Kang, Seok-Won;Jeong, Rag-Gyo;Han, Sang-Jin
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.242-246
    • /
    • 2017
  • The application of composite cathode materials including $LiFePO_4$ (lithium iron phosphate) of olivine crystal structure, which has high thermal stability, were investigated as alternatives for hybrid battery-capacitors with a $LiMn_2O_4$ (spinel crystal structure) cathode, which exhibits decreased performance at high temperatures due to Mn-dissolution. However, these composite cathode materials have been shown to have a reduction in capacity by conducting life cycle experiments in which a $LiFePO_4$/activated carbon cell was charged and discharged between 1.0 V and 2.3 V at two temperatures, $25^{\circ}C$ and $60^{\circ}C$, which caused a degradation of the anode due to the lowered voltage in the anode. To avoid the degradation of the anode, composite cathodes of $LiFePO_4/LiMn_2O_4$ (50:50 wt%), $LiFePO_4$/activated carbon (50:50 wt%) and $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ (50:50 wt%) were prepared and the life cycle experiments were conducted on these cells. The composite cathode including $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ of layered crystal structure showed stable voltage behavior. The discharge capacity retention ratio of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ was about twice as high as that of a $LiFePO_4/LiMn_2O_4$ cell at thermal stability experiment for a duration of 1,000 hours charged at 2.3 V and a temperature of $80^{\circ}C$.