• Title/Summary/Keyword: Old tunnel

Search Result 111, Processing Time 0.034 seconds

A Case Study on Deformation Conditions and Reinforcement Method of Cavity behind the Lining of Domestic Old Tunnel (국내 재래식 터널의 변상현황과 배면공동 보강 사례연구)

  • Kim, Young-Muk;Lim, Kwang-Su;Ma, Sang-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1343-1350
    • /
    • 2005
  • In this study, the whole deformation conditions of domestic old tunnels and reinforcement methods for deformation tunnels were investigated and analysed, and the present conditions, occurrence cause and reinforcement methods of cavity behind the tunnel lining were investigated and analysed comprehensively. The deformation causes of domestic old tunnels could be classified in three kinds : change of earth pressure operating tunnel ground, material problem of concrete lining, mistake of design and construction. As a result of analysis, the tunnel deformation was occurred by not specific cause but various cause As a result of investigation for 455 domestic tunnel data, more than 70% of the tunnel deformation was related to leakage and the other deformation cause also accompanied leakage mostly. An applied reinforcement method was related to leakage and flood prevention measures, but application of reinforcement method for boundary area between tunnel and ground and tunnel periphery which influence on the tunnel stability was still defective. The cavity of domestic old tunnel occupied about 16% of the total tunnel length and about 68% of cavity was located in the crown of tunnel, and besides, the occurrence cause of cavity was analysed to design, construction and management cause. The filling method for cavity using filling material was comprehensively appling to cavity behind tunnel lining.

  • PDF

Analysis on the behavior of a old tunnel supporting system by enlargement (노후터널 확대시 기존터널 지보재 응력 변화에 대한 분석)

  • Baek, Ki-Hyun;Kim, Woong-Ku;Seo, Kyoung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1382-1387
    • /
    • 2010
  • A 3D FEM numerical analysis was performed to observe the changes of supporting system of a old 1-lane tunnel when it is enlarged to 2-lane, 3-lane and 4-lane. The standard Type-III supporting pattern was applied to the new tunnel because the ground was assumed as Type-III. The observation was carried out at the middle supporting system of the old 1-lane tunnel alignment. The results shows that the changes of old tunnel supporting system began when the new tunnel was excavated at 2D(D is the equivalent diameter of 1-lane tunnel) behind of the observation place and became very rapid from 1D.

  • PDF

Assessment of influence of old mine gangway on stability of road tunnel in mine area (광산지역 도로 터널링에 있어 폐갱도가 터널 안정성에 미치는 영향 평가)

  • Synn, Joong-Ho;Shin, Hee-Soon;Sunwoo, Choon;Park, Chan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.123-133
    • /
    • 2002
  • In the construction of the road tunnel in mine area, old mine gangways can cause the instability of the tunnel. In this case study, the field investigation is carried out to figure out the location of old gangways adjacent to the tunnel, and their influence on the tunnel stability is estimated according to the location pattern and rock condition by FLAC analysis. The grouting reinforcement of tunnel crown region and old gangway is suggested and its role on assurance of the tunnel stability is also verified. It can be said from this study that the effect of the old gangway on the stability of tunnel varies with the dimension of gangway, distance from the tunnel, rock condition and groundwater, and therefore these paramerter should be compositively considered in the assessment of the tunnel stability.

  • PDF

A Study on Development of Lightweight Foam Filling Material for the Voids behind Tunnel Liner using Stone-dust and Application to the Old Tunnel (석분을 이용한 터널 뒤채움용 경량기포 충전재의 개발과 현장적용에 대한 연구)

  • Ma, Sang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.139-147
    • /
    • 2003
  • The most tunnel damage such as cracks or leakage which exist in tunnel lining commonly, is caused by the voids where exist behind the tunnel lining, through the tunnel safety inspections. These voids were analysed to affect to a stability of a running-tunnel seriously. The aim of this paper is to develope the lightweight foam concrete for tunnel backfilling material using stone-dust of cake state and to apply the lightweight foam concrete developed to the old tunnel. This paper shows the basic properties of lightweight foam concrete mixed with stone-dust including flow rate, unit volume weight, absorption rate and compressive strength. In addition, according to the designed compound ratio, the lightweight foam concrete was applied to the ASSM tunnel for an application assessment. The engineering application of the lightweight foam concrete as the old tunnel's backfilling material was confirmed in this assessment.

On the optimum design of reinforcement systems for old masonry railway tunnels

  • Ghyasvand, Soheil;Fahimifar, Ahamd;Nejad, Fereidoon Moghadas
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.145-155
    • /
    • 2022
  • Safety is a most important parameters in underground railway transportation; Also stability of underground tunnel is very important in tunneling engineering. Design of a reliable support system requires an evaluation of both ground demand and support capacity. Iran's traditional railway tunnels are mainly supported with masonry structures or unsupported in high quality rock masses. A decrease in rock mass quality due to changes in groundwater regime creep and fatigue in rock and similar phenomena causes tunnel safety to decrease during time. The case study is an old tunnel in Iran, called "Keshvar"; it is more than 50 years old railway organization. In operating this Tunnel, until the several problems came up based on stability and leaking water. The goal of study is evaluation of the various reinforcement systems for supporting of the tunnel. The optimal selection of the reinforcement system is examined using TOPSIS Fuzzy method in light of the looming and available uncertainties. Several factors such as; the tunnel span, maintenance, drainage, sealing, ventilation, cost and safety were based to choose the method and system of designing. Therefore, by identifying these parameters, an optimal reinforcement system was selected and introduced. Based on optimization system for analysis, it is revealed that the systematic rock bolts and shotcrete protection had a most appropriate result for these kind of tunnel in Iran.

Case Studies of Automatic Measurement and strength for Damage in the Public Tunnel (공용중인 터널의 변상에 대한 보강 및 자동화계측 사례)

  • Han Ja-Jung;Kim Young-Ho;Jang Gi-Soo;Kweon Young-Jung;Ahn Sang-Ro
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.270-281
    • /
    • 2005
  • An especial attention for old tunnel safety is required on increasing of The various tunnel recently. Specially, the lining investigation method of the old tunnel will be able to presume condition of concrete lining indirectly. Because it is many restriction thought of environment and ground condition investigation method of tunnel lining rear. This study carried out section & convergence measurement of part which was deformed in tunnel lining. It had been observed for the change of tunnel behavior with a continuous measurement. It has been analyzed for a cause of tunnel deformation and inspected for the effect after a repair-reinforcement to tunnel compared with the effect before those by structure analysis. By establishing automatic measurement system after repair-reinforcement to tunnel, it would be accomplished to convergence measurement continually. As a result, it was observed that deflection and deformation of tunnel was convergent. but it should be followed to a continuous maintenance because of unstable ground condition, cause of inner tunnel, environment. The railroad tunnel which was executed a reinforcement of the tunnel lining must investigate the close condition of reinforcement lining and concrete lining.

  • PDF

A Study on the Behaviour of Existing Subway Tunnel due to Demolition of Old Buildings and Construction of New Buildings (기존 건물 철거 및 신축 공사에 따른 지하철터널 거동특성 연구)

  • Chung, Jeeseung;Lee, Kyuyoung;Kim, Yongsoo;Lee, Sungil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.10
    • /
    • pp.23-28
    • /
    • 2014
  • Recent increasing of redevelopment project causes construction of new buildings after demolition of old buildings. However, the researches have been largely confirmed to analysis of behaviour characteristics of existing subway tunnel due to adjacent excavation which constructing new building so far. Accordingly, The ${\bigcirc}{\bigcirc}$ Building which will be built after demolishing existing parking lot is selected as a subject of study. And the purpose of this study is to analyze the effects on existing subway tunnel due to loading and unloading caused by demolition of upper buildings. The numerical analysis was performed by using the MIDAS/GTS program. Two cases for the numerical analysis were analyzed. The one is considering demolition of old buildings and the other is not considering it. This study is to analyze the effect on existing subway tunnel caused by demolition of upper building by analyzing numerical analysis results for tunnel displacement and lining stress. It was analyzed that the effects of considering the demolition of old buildings are larger than those of no considering it.

Evaluation of Physical Properties for 53-Years Old Railway Tunnel Linning Concrete (53년 경과된 철도터널 라이닝 콘크리트의 물성 평가)

  • 이상민;이태규;김동석;이웅종;김종우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.360-365
    • /
    • 1995
  • The purpose of this study is to identify the various characteristics of the 53-years old railway tunnel linning concrete. The nondestructive technique such as the surface hardness method and the ultrasonic method, the extent of carbonation by the phenolphthalein indicator, and the chemical analysis due to XRD/XRF are considered Also the concrete core was cut in two pieces per tunnel for the exact evaluation of strength. On the basis of the experimental result, it is concluded that the durability and the serviceability of old tunnel linning concrete are affected by the initial mixing condition and the environmental effect.

  • PDF

A Study on Development of the Controlled Low-Strength and High-Flowable Filling Material and Application of the Backfilling in Cavities behind the Old Tunnel Lining (고유동 충전재의 개발과 노후 터널의 배면공동 뒤채움에 관한 연구)

  • Ma, Sang-Joon;Seo, Kyoung-Won;Bae, Gyu-Jin;Ahn, Sang-Cheol;Lim, Kyung-Ha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.177-184
    • /
    • 2002
  • The most tunnel damage such as cracks or leakage which exist in tunnel lining commonly, is caused by the cavities where exist behind the tunnel lining, through the tunnel safety inspections. These cavities were analysed to affect a stability of a running-tunnel seriously. This study is on the development of the controlled low-strength and flowable filling material which is able to apply to the cavity behind the tunnel lining. The major materials of backfilling developed are a crushed sand and a stone-dust which exists as a cake-state and is a by-product obtained in the producting process of aggregate. It is conformed with the design standard to the physical characteristics of backfilling. The backfilling material developed is designed to reduce the fair amount of cement. According to the designed compound ratio, it is carried out the laboratory tests such as a compressive strength and a chemical analyses and is applied to dilapidated old tunnel for an application assessment.

A Study on the Lining Stability of Old Tunnel Using Groundwater Flow Modelling and Coupled Stress-Pore Water Pressure Analysis (지하수 유동과 응력-간극수압 연계 해석을 통한 노후터널의 라이닝 안정성 분석)

  • Kim, Bum-Joo;Jung, Jae-Hoon;Jang, Yeon-Soo;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.101-113
    • /
    • 2012
  • The degradation of a tunnel drainage system leads to increases in pore water pressure around the tunnel and the lining stress, which results in affecting the tunnel stability. In the present study of the Namsan 3th tunnel, more than 30 year old tunnel, the effects of the drainage performance reduction due to drain hole clogging on the tunnel lining stability were investigated by examining pore water pressure distribution around the tunnel and the lining stresses through numerical analysis. Groundwater flow modeling on the Mt. Namsan region was done first and 3D seepage and coupled stress-pore water pressure finite element analysis were performed on the tunnel using the results of the groundwater flow modeling. The pore water pressure distribution and the tunnel lining stresses could be predicted using a drain hole outflow data measured in the tunnel site. This analysis method may be used to evaluate the current stability of old tunnels for which in most cases field investigations and related information are not readily available.