• 제목/요약/키워드: Oilseed

검색결과 84건 처리시간 0.03초

크림손클로버, 헤어리베치, 호밀 추출물이 몇 가지 작물의 종자 발아와 유근 생장에 미치는 allelopathy 효과 (Allelopathic Effects of Crimson Clover, Hariy Vetch and Rye on Germination and Radicle Elongation of Several Crops)

  • 이지현;이병모;전승호;정종일;김민철;심상인
    • 한국잡초학회지
    • /
    • 제30권4호
    • /
    • pp.371-379
    • /
    • 2010
  • 피복작물의 생육 단계에 따른 allelopathy 효과의 차이를 알아보기 위해, 각 피복작물의 영양생장기, 개화기, 결실기에 채취한 시료로 부터 추출한 추출물을 이용해 콩, 무, 유채, 상추의 발아에 미치는 영향을 확인하였다. 콩과 무에서는 각 피복작물 추출물의 처리구에서 발아율에 별다른 차이를 나타내지 않았으나, 유채에서는 크림손클로버의 개화기 20% 추출물, 헤어리베치의 영양생장기, 개화기, 결실기 20% 추출물, 호밀의 영양생장기 20% 추출물들에서 20% 이상의 발아 억제가 나타났으며, 상추는 영양생장기의 크림손클로버와 헤어리베치의 20% 추출물 처리에서 발아세가 낮게 나타났다. 피복작물의 영양생장기 추출물에서 유근 생장 억제율이 가장 높았으며 $GR_{50}$ 값도 낮게 나타났다. 피복작물 추출물의 총 페놀화합물 함량도 영양생장기 때 가장 높았고, 결실기로 생육이 진전되면서 감소되었다. HPLC 분석 결과 크림손클로버 추출물에서 검출 된 p-hydroxybenzoic acid를 제외한 나머지 phenolic acid 함량들은 총 페놀화합물의 함량과 다른 경향을 보였으며, 헤어리베치 추출물에서는 coumarin, 호밀 추출물에서는 BOA와 caffeic acid를 제외한 나머지 물질들이 개화기에서 가장 높은 함량을 나타냈다. 그러나 크림손클로버와 호밀 추출물에서 분석 물질들의 총 함량은 영양생장기 추출물에서 가장 높게 나타났다.

신 바이오디젤 원료 작물인 Camelina의 cDNA library 제작 및 유전자 특성 (Construction and Characterization of a cDNA Library from the Camelina sativa L. as an Alternative Oil-Seed Crop)

  • 박원;장영석;안성주
    • 한국작물학회지
    • /
    • 제55권2호
    • /
    • pp.151-158
    • /
    • 2010
  • 지금까지 양구슬냉이의 유전정보는 거의 연구되지 않았으므로 우리는 양구슬냉이의 잎으로부터 cDNA library를 제작하고 발현유전자의 종류와 기능별 분류를 조사하였다. 그 결과를 요약하면 다음과 같다. 1. cDNA library에서 1334개 의 클론들을 얻었고 삽입된 단편들의 염기서열의 평균길이는 736bp였다. 우리는 1269개의 high-quality expressed sequence tags (ESTs) 서열을 얻었다. 이러한 EST의 클러스터 분석결과 고유 염기서열(unigene)을 가진 유전자의 수는 851개를 나타냈다. 2. Unigene 476개는 GeneBank에 기능이 알려진 유전자들과 고도의 상동성을 나타내었다. 다른 375개의 unigene들은 기능이 알려지지 않은 것들이었다. 나머지 63개는 NCBI데이터베이스에 어떤 유전자와도 상동성을 보이지 않았고 이러한 유전자들은 아마도 양구슬냉이의 잎에서 발현되는 새로운 유전자일 것으로 보인다. 3. 데이터베이스에서 상동성을 나타낸 EST들을 기능별 주석에 따라서 17개의 카테고리로 분류하였다. 대표적으로 가장 분포도가 높은 카테고리는 결합 기능 또는 보조인자 요구의 단백질(27%), 대사(11%), 세포 소기관 위치(11%), 세포수송과 수송기관 그리고 수송 경로(7%), 에너지(6%), 대사와 단백질 기능의 조절(6%) 등이 있다. 이러한 우리의 연구 결과는 양구슬냉이의 유용한 유전적 자원과 전반적인 mRNA 발현 정보를 제공해 줌으로써 대체 에너지 작물로 떠오르는 양구슬냉이의 다양한 분자적 연구에 기여할 것으로 사료된다.

Digestibility of nitrogen and dry matter of oilseed meals and distillers dried grains supplemented in swine diets

  • Park, Sung-Kwon;Cho, Eun-Seok;Jeong, Yong-Dae;Sa, Soo-Jin
    • 농업과학연구
    • /
    • 제43권5호
    • /
    • pp.769-776
    • /
    • 2016
  • This study was conducted to investigate the digestibility of dry matter (DM) and nitrogen (N) in oilseed meals and distillers dried grains (DDG) fed to growing-finishing pigs. As experimental animals, eleven barrows (initial body weight, $71.7{\pm}17.0kg$) were housed in individual metabolism cages. The experimental design consisted of an $11{\times}8$ incomplete Latin square with 11 dietary treatments and 8 replication periods. The diets were individually formulated with dehulled soybean meal produced in Korea (SBM-KD), soybean meal produced in India (SBM-I), soybean meal produced in Korea (SBM-K), corn high-protein distiller dried grains (HPDDG), tapioca distillers dried grains (TDDG), canola meal (CAM), corn germ meal (CGM), copra meal (COM), palm kernel meal (PKM), sesame meal (SM), and perilla meal (PM). Pigs with SBM-KD and SBM-K showed greater (p < 0.05) intake of N than SBM-I, HPDDG, and PKM. Total feces output was decreased (p < 0.05) in SBMs (SBM-KD, -I, and -K), HPDDG, and CGM compared with TDDG, SM, and PM. The DM in excreted feces was decreased (p < 0.05) in SBMs and CGM compared to TDDG, SM, and PM. Similarly, the SM and PM fed to pigs resulted in greater (p < 0.05) fecal excretion of N than the others. Apparent total tract digestibility (ATTD) of DM in SBMs and CGM was greater (p < 0.05) than TDDG, SM, and PM. The SBMs fed to pigs showed higher (p < 0.05) ATTD of N than TDDG, COM, SM, and PM. In conclusion, our results provided nutritional information about various ingredients and would be useful to contain more precise amounts of nutrients included in feed ingredients of pig diet.

고도불포화지방산 생합성: 식물에서의 대사공학적 응용 (Biosynthesis of Polyunsaturated Fatty Acids: Metabolic Engineering in Plants)

  • 김순희;김소연;김종범;노경희;김영미;박종석
    • Journal of Applied Biological Chemistry
    • /
    • 제52권3호
    • /
    • pp.93-102
    • /
    • 2009
  • Polyunsaturated fatty acids (PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have significantly beneficial effects on health in relation to cardiovascular, immune, and inflammatory conditions and they are involved in determining the biophysical properties of membranes as well as being precursors for signaling molecules. PUFA biosynthesis is catalyzed by sequential desaturation and fatty acyl elongation reactions. This aerobic biosynthetic pathway was thought to be taxonomically conserved, but an alternative anaerobic pathway for the biosynthesis of PUFA is now known to contain analogous polyketide synthases (PKS). Certain fish oil can be a rich source of PUFA although processed marine oil is generally undesirable as food ingredients because of the associated objectionable flavors that are difficult and cost-prohibitive to remove. Oil-seed plants contain only the 18-carbon polyunsaturated fatty acid alpha-linolenic acid, which is not converted in the human body to EPA and DHA. It is now possible to engineer common oilseeds which can produce EPA and DHA and this has been the focus of a number of academic and industrial research groups. Recent advances and future prospects in the production of EPA and DHA in oilseed crops are discussed here.

SNP discovery and applications in Brassica napus

  • Hayward, Alice;Mason, Annaliese S.;Dalton-Morgan, Jessica;Zander, Manuel;Edwards, David;Batley, Jacqueline
    • Journal of Plant Biotechnology
    • /
    • 제39권1호
    • /
    • pp.49-61
    • /
    • 2012
  • This review summarises the biology, discovery and applications of single nucleotide polymorphisms in complex polyploid crop genomes, with a focus on the important oilseed crop $Brassica$ $napus$. $Brassica$ $napus$ is an allotetraploid species, and along with soybean and oil palm is one of the top three most important oilseed crops globally. Current efforts are well underway to $de$ $novo$ assemble the $B.$ $napus$ genome, following the release of the related $B.$ $rapa$ 'A' genome last year. The next generation of genome sequencing, SNP discovery and analysis pipelines, and the associated challenges for this work in $B.$ $napus$, will be addressed. The biological applications of SNP technology for both evolutionary and molecular geneticists as well as plant breeders and industry are far-reaching, and will be invaluable to our understanding and advancement of the $Brassica$ crop species.

De novo gene set assembly of the transcriptome of diploid, oilseed-crop species Perilla citriodora

  • Kim, Ji-Eun;Choe, Junkyoung;Lee, Woo Kyung;Kim, Sangmi;Lee, Myoung Hee;Kim, Tae-Ho;Jo, Sung-Hwan;Lee, Jeong Hee
    • Journal of Plant Biotechnology
    • /
    • 제43권3호
    • /
    • pp.293-301
    • /
    • 2016
  • High-quality gene sets are necessary for functional research of genes. Although Perilla is a commonly cultivated oil crop and vegetable crop in Southeast Asia, the quality of its available gene set is insufficient. To construct a high-quality Perilla gene set, we sequenced mRNAs extracted from different tissues of Perilla citriodora, the wild species (2n = 20) of Perilla. To make a high-quality gene set for P. citriodora, we compared the quality of assemblies produced by Velvet and Trinity, the two well-known de novo assemblers, and improved the de novo assembly pipeline by optimizing k-mers and removing redundant sequences. We then selected representative transcripts for loci according to several criteria. The improved assembly yielded a total of 86,396 transcripts and 38,413 representative transcripts. We evaluated the assembled transcripts by comparing them to 638 homologous Arabidopsis genes involved in fatty acid and TAG biosynthesis pathways. High proportions of full-length genes and transcripts in the assembled transcripts matched known genes in other species, indicating that the P. citriodora gene set can be applied in future functional studies. Our study provides a reference P. citriodora gene set for further studies. It will serve as valuable genetic resource to elucidate the molecular basis of various metabolisms.

Prototype Development of a Small Combine for Harvesting Miscellaneous Cereal Crops and its Basic Performance

  • Lee, Beom Seob;Yoo, Soonam;Lee, Changhoon;Yun, Young Tae
    • Journal of Biosystems Engineering
    • /
    • 제43권4호
    • /
    • pp.311-319
    • /
    • 2018
  • Purpose: The aim of this study is to develop a small combine for harvesting miscellaneous cereal crops. Methods: A prototype small combine was designed and constructed. Its specifications and basic performance were investigated. Results: The prototype small combine for harvesting miscellaneous cereal crops was designed and constructed to reflect similar specifications as those of the conventional combine. The prototype small combine comprises a diesel engine with the rated power/speed of 22.0 kW/2,600 rpm, three-stage primary and two-stage speed range transmission shifts, and a double acting threshing part. The maximum travel speeds of the prototype combine are approximately 0.72 m/s, 2.50 m/s, 0.30 m/s at the low, high speed range shifts in the forward direction, and while traversing in the reverse direction, respectively. The minimum radius of turning was approximately 1.50 m. In a static lateral overturning test, the prototype combine overturned neither to the right nor to left on a $30^{\circ}$ slope. The results of an oilseed rape harvesting test included the maximum operating speed of 0.32 m/s, the grain loss ratio of approximately 9.0%, and the effective field capacity of approximately 10.3 a/h. Additionally, among the outputs in grain outlet, the whole grains, damage grains, and materials other than grain (MOG) ratios accounted for 97.4%, 0.0%, and 2.6%, respectively. Conclusions: The prototype small combine for harvesting miscellaneous cereal crops indicates good driving ability and stability. The results of the oilseed rape harvesting test reveal that the harvesting performance must be enhanced such that the separating and cleaning parts are more suitable for each type of crop, thus reducing grain loss and foreign substances among the outputs in grain outlet. An improved small prototype combine could be used effectively to mechanize the harvesting of miscellaneous cereal crops in small family farms or semi-mountainous areas.

Different Levels of N Supply Impacts on Seed Yield by Modulating C and N Metabolism in Brassica Napus

  • Lee, Bok-Rye;Lee, Hyo;Kim, Tae-Hwan
    • 한국초지조사료학회지
    • /
    • 제39권2호
    • /
    • pp.75-80
    • /
    • 2019
  • Oilseed rape is known to crop having low nitrogen use efficiency (NUE) but requires high levels of N fertilizer. NUE is associated with N remobilization from source to sink organ, consequently affects seed yield. Remobilization of leaf N is also related to transport of C/N metabolites in phloem. However, interaction between seed yield and phloem transport was not fully documented. In response to seed yield, N and C metabolites and their transport into seed from bolting to pod filling stage investigated in two contrasting genotypes (Capitol and Pollen) cultivated under ample (HN) or limiting nitrate (LN) supply. Seed yield was significantly reduced in N limitation and its reduction rate was much lower in Capitol than in Pollen compared to HN treated plants. Amino acid and protein content was higher in Capitol than in Pollen at bolting stage. They gradually decreased during plant development but not significant between two cultivars and/or two treatments. Glucose, fructose and sucrose content were 1.8-,1.6- or 1.25-fold higher in LN condition than in HN condition, respectively. Amino acid and sucrose content in phloem were largely higher in Capitol than in Pollen under LN condition. These results indicate that the higher seed yield might be related to greater transport ability of amino acid and sucrose in phloem under LN condition.

Ammonium Excess Promotes Proline Synthesis but Inhibits Glutathione Synthesis in Oilseed Rape (Brassica napus L.)

  • Hyunjae Lee;Seon-Hye Baek;Tae-Hwan Kim
    • 한국초지조사료학회지
    • /
    • 제43권2호
    • /
    • pp.109-115
    • /
    • 2023
  • Ammonium (NH4+) serves as a nitrogen source, but its elevated levels can hinder plant growth and production. Excess NH4+ with α-ketoglutarate is assimilated into glutamate, a precursor of proline and glutathione (GSH). This study aimed to investigate the effects of excessive NH4+ on the regulation of proline and GSH synthesis. Detached leaves from oilseed rape (Brassica napus L.) were fed with 0, 50, 100, 500, and 1000 mM NH4Cl for 16 h. As the NH4+ concentrations increased, the leaves exhibited progressive wilting and yellowing. Furthermore, total carotenoid and chlorophyll concentrations declined in response to all NH4+ treatments, with the lowest levels observed in 1000 mM NH4+ treatment. Hydrogen peroxide (H2O2) concentration showed a minor increase at low NH4+ concentration (50 and 100 mM) treatments but a significant increase at high NH4+ (500 and 1000 mM), which was consistent with the localization of H2O2. Amino acid concentrations increased with increasing in NH4+ concentration, while the protein concentration displayed the opposite trend. Proline and cysteine concentrations exhibited a gradual increase in response to increasing NH4+ concentrations. However, GSH concentrations rose only in the 50 mM NH4+ treatment and decreased in the 500 and 1000 mM NH4+ treatments. These results indicate that excessive NH4+ is primarily assimilated into proline, while GSH synthesis is adversely affected.

유채의 출아 검정을 통한 제설제의 작물 영향 평가 (Evaluation on the Effects of Deicing Salts on Crop using Seedling Emergence Assay of Oilseed Rape (Brassica napus))

  • 임수현;유혜진;이찬영;공유석;이병덕;김도순
    • 한국작물학회지
    • /
    • 제66권1호
    • /
    • pp.72-79
    • /
    • 2021
  • 겨울철 제설제 사용이 증가함에 따라 제설제가 사용된 고속도로변의 농작물에 대한 피해사례가 증가하고 있다. 국내 다양한 제설제가 제설목적으로 사용되고 있지만 작물에 미치는 영향에 대한 연구는 제한적이다. 따라서 본 연구는 국내에서 사용되는 6종의 제설제가 유채의 출아에 미치는 영향을 비교하여 작물에 미치는 제설제의 영향을 비교 평가하고자 수행되었다. NaCl, CaCl2 또는 MgCl2으로 구성된 5개의 염화물계 제설제와 1개의 비염화물계 제설제(SM-3)를 유채 파종 직후 6 처리농도(0. 25, 50, 100, 200, 400 mM)로 처리한 후 출아개체수를 조사하였다. 유채의 출아는 제설제 종류에 관계없이 제설제 농도가 증가함에 따라 현저히 감소하였는데 비염화물계 보다 염화물계 제설제 처리구에서 높은 출아억제가 확인되었다. 제설제 농도에 따른 출아율을 log-logistic 모델에 적용하여 비선형회귀 분석을 실시한 결과 50% 출아를 억제하는 농도인 GR50값이 비염화물계인 SM-3는 47.1 mM이고, 염화물계 제설제는 30.7 mM (PC-10)에서 37.5 mM (ES-1)로 비염화물계 제설제와 염화물계 제설제간 9.6 mM ~ 16.4 mM의 차이를 보였으나 염화물계 제설제간 차이는 크지 않음을 확인하였다. 본 연구의 결과는 유채의 출아 특성 평가가 작물에 대한 제설제의 잠재적 피해를 예측할 수 있는 유용한 평가방법임을 시사한다.