• Title/Summary/Keyword: Oil-Contaminated Soil

Search Result 216, Processing Time 0.025 seconds

Field Test Assessment of Biological Recovering Agent for treating Oil Contaminated Soil (생물학적 유류오염토양 복원제의 현장 적용성 평가)

  • Kim, Soo-Hong;Song, Seung-Koo;Suh, Jung-Ho
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.73-78
    • /
    • 2010
  • In this study, recovering agent was produced with organic sludge and modified peat moss (MPM) in pilot plant mixer to recover oil contaminated soil, and field test of it was estimated using landfarming method. Oil contaminated soil recovering agent was thought to contain more microorganisms than raw waste sludge and was no problem to come onto the market because there were not any items of specified wastes. According to the results of TPH variation with time, it was observed the initial degradation velocity of oil with produced recovering agent was rapid up to 50% after 4 days, remarkably. Because the microorganisms in the organic sludge discharged from chemical plant already acclimated with oil, therefore, it could be estimated initial degradation velocity of recovering agent might be rapid. It was concluded that the oil contaminated soil recovering agent produced in this study have high marketability because of its two aspects on recycling of wastes and initial rapid degradation capacity.

Improvement of Landfarming Applicability from Analysis of Case Studies (토양경작법의 사례 분석을 통한 적용방안 개선)

  • Kim, Jong-Won;Choi, Sang-Il;Yang, Jae-Kyu;Kim, Bo-Kyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.19-28
    • /
    • 2010
  • Considering six screen matrix to select an optimum remediation method for the Kunsan military base contaminated with petroleum oil, the following order was obtained: landfarming > biopile > soil washing > thermal desorption = incineration. When the landfarming method was applied for the remediation of 2,250 $m^3$ soil contaminated with petroleum oil ranging from 500 to 2,404 mg/kg as TPH, contamination level decreased below target concentration 450 mg/kg after 20~42 days depending on the initial contamination. From the evaluation of case studies of landfarming, it is suggested that ratty-truss or single-arch structure is suitable in the landfarming plant for the treatment of large-scale contaminated soil requiring long period of remediation. But, vinyl-house structure is suitable in the landfarming plant for the treatment of small-scale contaminated soil requiring short period of remediation. Therefore vinyl-house structure is recommended in the remediation of contaminated soil less than 5,000 $m^3$ requiring within 1 year of remediation period but ratty-truss or single-arch structure is recommended for the remediation of contaminated soil more than 5,000 $m^3$.

Analytical Method of Polycyclic Aromatic Hydrocarbons (PAHs) in Petroleum Contaminated Soils - Focused on the 16 US EPA Priority PAHs (유류오염토양 중 다환방향족탄화수소류(PAHs) 분석방법 연구 - US EPA 16종 PAHs를 중심으로)

  • Kim, Ji Young;Kim, Dongho;Kim, Tae Seung;Han, Jin-Suk;Lee, Jai-Young;Noh, Hoe-Jung
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.5
    • /
    • pp.20-30
    • /
    • 2012
  • In case of analyzing PAHs (EPA 16 compounds) in oil-contaminated soils, the lump of peaks may occur because of the aliphatic and polar compounds in oil. This phenomenon is due to the lower accuracy of the analysis. To solve this problem, evaluation of application of silicagel-alumina multi-layer fraction was performed using standard substances and oil-contaminated soils. As a result of application of silicagel-alumina multi-layer fraction cleanup method using standard substances, recovery rates of surrogate standards (5 compounds including Naphthalene-d8) were 83~100% and those of target standards were 75~129%. These were to meet the target values (60~130%) in this study. When used 4% water-silicagel column analyze PAHs in oil-contaminated soils, Some problems were generated for quantitative analysis of PAHs; concentration of PAHs was underestimated due to an upward baseline of internal standard (recovery rate: less than 60%) and overestimated by the lump of peaks which were not purified (the biggest recovery rate: more than 400%). On the other hand, in case of silicagel-alumina multi-layer fraction cleanup method, recovery rate of surrogate standards were 61~101.6%. Therefore this cleanup method was considered a valid method to improve accuracy of analysis of PAHs in oil-contaminated soils.

Interface shear between different oil-contaminated sand and construction materials

  • Mohammadi, Amirhossein;Ebadi, Taghi;Boroomand, Mohammad Reza
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.299-312
    • /
    • 2020
  • The aim of this paper was to investigating the effects of soil relative density, construction materials roughness, oil type (gasoil, crude oil, and used motor oil), and oil content on the internal and interface shear behavior of sand with different construction materials by means of a modified large direct shear test apparatus. Tests conducted on the soil-soil (S-S), soil-rough concrete (S-RC), soil-smooth concrete (S-SC), and soil-steel (S-ST) interfaces and results showed that the shear strength of S-S interface is always higher than the soil-material interfaces. Internal and interface friction angles of sand beds increased by increase in relative density and decreased by increasing oil content. The oil properties (especially viscosity) played a major role in interface friction behavior. Despite the friction angles of contaminated sands with viscous fluids drastically decreased, it compensated by the apparent cohesion and adhesion developed between the soil grains and construction materials.

Evaluation of Bioremediation Efficiency of Crude Oil Degrading Microorganisms Depending on Temperature (온도에 따른 원유분해미생물의 생물학적 정화효율 평가)

  • Kim, Jong-Sung;Lee, In;Jeong, Tae-Yang;Oh, Seung-Taek;Kim, Guk-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2016
  • Bioremediation is one of the most effective ways to remediate TPH-contaminated sites. However, under actual field conditions that are not at the optimum temperature, degradation of microorganisms is generally reduced, which is why the efficiency of biodegradation is known to be significantly affected by the soil temperature. Therefore, in this study, the labscale experiment was conducted using indigenous crude oil degrading microorganisms isolated from crude oil contaminated site to evaluate the remediation efficiency. Crude oil degrading microorganisms were isolated from crude oil contaminated soil and temperature, which is a significant factor affecting the remediation efficiency of land farming, was adjusted to evaluate the microbial crude oil degrading ability, degradation time, and remediation efficiency. In order to assess the field applicability, the remediation efficiency was evaluated using crude oil contaminated soil (average TPH concentration of 10,000 mg/kg or more) from the OO premises. Followed by the application of microorganisms at 30℃, the bioremediation process reduced its initial TPH concentration of 10,812 mg/kg down to 1,890 mg/kg in 56 days, which was about an 83% remediation efficiency. By analyzing the correlation among the total number of cells, the number of effective cells, and TPH concentration, it was found that the number of effective microorganisms drastically increased during the period from 10 to 20 days while there was a sharp decrease in TPH concentration. Therefore, we confirmed the applicability of land farming with isolated microorganisms consortium to crude oil contaminated site, which is also expected to be applicable to bioremediation of other recalcitrant materials.

The Research on The Stability as Fill Material of Soil Defiled by Oil Element and Heavy Metals (중금속 및 유류로 오염된 토질의 성토재료로서의 안정성에 관한 연구)

  • Lee, Chung-Sook;Eom, Tae-Kyu;Choi, Yong-Kyu;Lee, Min-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.5-13
    • /
    • 2004
  • In the site for apartment construction, the contaminated soils of the heavy metal and the oil were appeared. The representative soil samples were sampled at 7 sampling points. To confirm the geotechnical stability of the contaminated soils, the environmental checks for the heavy metal and the oil. The soils of 2 sampling points were contaminated heavily, so it was estimated that these soils must be disused. For 1 sampling point of the slightly contaminated soil, to confirm the re-applicability of fill material, the stability analysis was performed and it was concluded that this soil will be able to re-use.

  • PDF

Analytical method of polycyclic aromatic hydrocarbons (PAHs) in oil contaminated soils (유류 오염토양 중 다환방향족탄화수소류(PAHs) 분석방법 고찰)

  • Yoon, Jeong Ki;Park, Jin Soo;Shin, Sun Kyoung;Kim, Tae Seung
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.296-303
    • /
    • 2008
  • This study was performed to establish an analytical method of PAHs in oil contaminated soil of these methods by evaluating the PAHs test methods from US EPA and ISO etc. The application to domestic contaminated soil leads to a conclusion that alumina column is a more effective clean-up procedure for oil contaminated soil rather than the others. It is proposed with the new analytical method of 12 PAHs except for more volatile compounds (naphthalene, acenaphthylene, acenaphthene, fluorene). The recovery of PAHs in this method ranged 67~107%. The oil contaminated soil samples were analyzed using GC/MSD. The concentration of PAHs ranged $78.68{\sim}275.57{\mu}g/kg$. The predominated compounds were fluoranthene, pyrene and chrysene attributing about 70% of total concentration. The level of Benzo[a]pyrene ranged $1.76{\sim}24.65{\mu}g/kg$.

토양 세정법을 이용한 실제 유류 오염 토양 및 지하수 정화

  • 강현민;이민희;정상용;강동환
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.418-421
    • /
    • 2003
  • Surfactant enhanced in-situ soil flushing was peformed to remediate the soil and groundwater at an oil contaminated site, and the effluent solution was treated by the chemical treatment process including DAF(Dissolved Air Flotation). A section from the contaminated site(4.5m$\times$4.5m$\times$6.0m) was selected for the research, which was composed of heterogeneous sandy and silt-sandy soils with average Hydraulic conductivity of 2.0$\times$10$^{-4}$ cm/sec. Two percent of sorbitan monooleate(POE 20) and 0.07% of iso-prophyl alcohol were mixed for the surfactant solution and 3 pore volumes of surfactant solution were injected to remove oil from the contaminant section. Four injection wells and two extraction wells were built in the section to flush surfactant solution. Water samples taken from extraction wells and the storage tank were analyzed by GC(gas-chromatography) for TPH concentration with different time. Five pore volumes of solution were extracted while TPH concentration in soil and groundwater at the section were below the Waste Water Discharge Limit(WWDL). Total 18.5kg of oil (TPH) was removed from the section. The concentration of heavy metals in the effluent solution also increased with the increase of TPH concentration, suggesting that the surfactant enhanced in-situ flushing be available to remove not only oil but heavy metals from contaminated sites. Results suggest that in-situ soil flushing and chemical treatment process including DAF could be a successful process to remediate contaminated sites distributed in Korea.

  • PDF

Bioremediation Efficiency of Oil-Contaminated Soil using Microbial Agents (토양미생물 복원제를 이용한 유류로 오염된 토양의 복원)

  • Hong, Sun-Hwa;Lee, Sang-Min;Lee, Eun-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.301-307
    • /
    • 2011
  • Oil pollution was world-wide prevalent treat to the environment, and the physic-chemical remediation technology of the TPH (total petroleum hydrocarbon) contaminated soil had the weakness that its rate was very slow and not economical. Bioremediation of the contaminated soil is a useful method if the concentrations are moderate and non-biological techniques are not economical. The aim of this research is to investigate the influence of additives on TPH degradation in a diesel contaminated soil environment. Six experimental conditions were conduced; (i) diesel contaminated soil, (ii) diesel contaminated soil treated with microbial additives, (iii) diesel contaminated soil treated with microbial additives and the mixture was titrated to the end point of pH 7 with NaOH, (iv) diesel contaminated soil treated with microbial additives and accelerating agents and (v) diesel contaminated soil treated with microbial additives and accelerating agents, and the mixture was titrated to the end point of pH 7 with NaOH. After 10 days, significant TPH degradation (67%) was observed in the DSP-1 soil sample. The removal of TPH in the soil sample where microbial additives were supplemented was 38% higher than the control soil sample during the first ten days. The microbial additives were effective in both the initial removal rate and relative removal efficiency of TPH compared with the control group. However, various environmental factors, such as pH and temperature, also affected the activities of microbes lived in the additives, so the pH calibration of the oil-contaminated soil would help the initial reduction efficiency in the early periods.

토양세척공법의 현장 적용을 통한 유류오염토양정화

  • 박인선;조종수;권오석;김영우;김석훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.148-151
    • /
    • 2003
  • Soil washing was applied as a supplementary step of soil remediation at a petroleum oil contaminated site. A soil washing system was designed, assembled, and operated at the site. A field screening method with PetroFlagTM was adopted at the site to find the exact boundary of contaminated area as soil excavation progressed and to verify the concentration of treated soil. The system operation showed the cleanup efficiency of 90% at the compatible cost compared to other methods.

  • PDF