• Title/Summary/Keyword: Oil quality 2-S

Search Result 202, Processing Time 0.037 seconds

Liquefaction Characteristics of ABS-polyethylene Mixture by a Low-Temperature Pyrolysis (ABS-Polyethylene 혼합물의 저온 열분해 특성평가)

  • Choi, Hong-Jun;Jeong, Sang Mun;Lee, Bong-Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.223-228
    • /
    • 2012
  • The low-temperature pyrolysis of ABS, polyethylene (PE) and an ABS-polyethylene (ABS-PE) mixture was conducted in a batch reactor at $450^{\circ}C$. The conversion and the product yield were measured as a function of the reaction time with a variation of the mixture composition. The oil products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the petroleum product quality standard of the Ministry of Knowledge Economy. The pyrolysis conversion increases with an increase in the content of PE. The yield of the pyrolytic products was ranked as heavy oil>gas>gasoline>gas oil>kerosene as the content of PE in the mixture increases.

Sustainable Development of Palm Oil: Synthesis and Electrochemical Performance of Corrosion Inhibitors

  • Porcayo-Calderon, J.;Rivera-Munoz, E.M.;Peza-Ledesma, C.;Casales-Diaz, M.;de la Escalera, L.M. Martinez;Canto, J.;Martinez-Gomez, L.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.133-145
    • /
    • 2017
  • Palm oil production is among the highest worldwide, and it has been mainly used in the food industry and other commodities. Currently, a lot of palm oil production has been destined for the synthesis of biodiesel; however, its use in applications other than the food industry has been questioned. Thereby for a sustainable development, in this paper the use of palm oil of low quality for corrosion inhibitors synthesis is proposed. The performance of the synthesized inhibitors was evaluated by using electrochemical techniques such as open circuit potential measurements, linear polarization resistance and electrochemical impedance spectroscopy. The results indicate that the fatty amides from palm oil are excellent corrosion inhibitors with protection efficiencies greater than 98%. Fatty amides molecules act as cathodic inhibitors decreasing the anodic dissolution of iron. When fatty amides are added, a rapid decrease in the corrosion rate occurs due to the rapid formation of a molecular film onto carbon steel surface. During the adsorption process of the inhibitor a self-organization of the hydrocarbon chains takes place forming a tightly packed hydrophobic film. These results demonstrate that the use of palm oil for the production of green inhibitors promises to be an excellent alternative for a sustainable use of the palm oil production.

Safety Profile Assessment and Identification of Volatile Compounds of Krill Eupausia superba Oil and Residues Using Different Extraction Methods

  • Haque, A.S.M. Tanbirul;Kim, Seon-Bong;Lee, Yang-Bong;Chun, Byung-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.159-165
    • /
    • 2014
  • In this study, Krill Eupausia superba oil was extracted using different solvents and supercritical carbon dioxide (SC-$CO_2$). During SC-$CO_2$ extraction, the pressure was set at 40 MPa and temperatures ranged from $40^{\circ}C$ to $55^{\circ}C$. We examined the differences in volatile compounds and safety profiles among extraction methods. Volatile compounds were determined using the thermal desorption system integrated with gas chromatography-mass spectrometry (GC-MS). Heavy metal content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). According to our results 10 volatile compounds were identified in krill sample. After SC-$CO_2$ extraction of oil, the concentrations of volatile compounds decreased, but increased after solvent extraction. In krill, heavy metal concentrations remained within the permissible limit. Moreover, Zn and Fe which have health benefits were detected at high concentrations. During a 90 days storage period at different temperatures, microbial activity was found to be lowest in SC-$CO_2$ extracted residues. Thus, the quality of krill oil and the residues obtained using SC-$CO_2$ extraction was higher and the oil was safer than those obtained using conventional solvent extraction. These results can be applied to the food industry to maintain high quality krill products.

Quality Characteristics of Livestock Feces Composts Commercially Produced in Gyeonggi Province in 2008

  • Kang, Chang-Sung;Roh, An-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.293-296
    • /
    • 2011
  • This survey was conducted to promote the environment-friendly use and recycling of livestock feces by obtaining information about the current state of livestock feces composts manufactured in Gyeonggi Province. Therefore, some aspects of quality and manufacturing techniques of livestock feces composts (LFCs) were examined especially in relation to the LFCs quality standard (LQS). By surveying the 70 composting plants in Gyeonggi Province, the total commercial production of LFCs in 2008 was estimated to be about $480,000Mg\;year^{-1}$ and they were manufactured mainly by using both mechanical mixer and bottom air blower. LFCs were composed mainly of chicken feces 29.2%, pig+chicken feces 23.1%, pig feces 20.0%, livestock feces+oil cake 12.3%, pig+chicken+cattle feces 10.8% and pig+cattle feces 4.6%. On the basis of the current official standard which was revised on March 2010, 11 composts out of surveyed 76 ones did not meet the LQS due to inadequate content of water (5), OM/N (1), NaCl (2) and Zn (3). The satisfaction rate to LQS by manufacturers was 100% in the composts produced by farmer's cooperative societies, 80.7% by civil factories, and 44.4% by farming guilds, respectively. The OM/N declined by adding chicken feces and oil cake, while Ca content was increased by the addition of chicken feces and NaCl was increased by adding cattle feces.

Effect of Different Zeolite Supported Bifunctional Catalysts for Hydrodeoxygenation of Waste Wood Bio-oil

  • Oh, Shinyoung;Ahn, Sye-Hee;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.344-359
    • /
    • 2019
  • Effects of various types of zeolite on the catalytic performance of hydrodeoxygenation (HDO) of bio-oil obtained from waste larch wood pyrolysis were investigated herein. Bifunctional catalysts were prepared via wet impregnation. The catalysts were characterized through XRD, BET, and SEM. Experimental results demonstrated that HDO enhanced the fuel properties of waste wood bio-oil, such as higher heating values (HHV) (20.4-28.3 MJ/kg) than bio-oil (13.7 MJ/kg). Water content (from 19.3 in bio-oil to 3.1-16.6 wt% in heavy oils), the total acid number (from 150 in bio-oil to 28-77 mg KOH/g oil in heavy oils), and viscosity (from 103 in bio-oil to $40-69mm^2/s$ in heavy oils) also improved post HDO. In our experiments, depending on the zeolite support, NiFe/HBeta exhibited a high Si/Al ratio of 38 with a high specific surface area ($545.1m^2/g$), and, based on the yield of heavy oil (18.3-18.9 wt%) and HHV (22.4-25.2 MJ/kg), its performance was not significantly affected by temperature and solvent concentration variations. In contrast, NiFe/zeolite Y, which had a low Si/Al ratio of 5.2, exhibited the highest improved quality for heavy oil at high temperature, with an HHV of 28.3 MJ/kg at $350^{\circ}C$ with 25 wt% of solvent.

Effects of Fish Oil Supplementation on Growth Performance, Fatty Acid Composition of Longissimus Muscle and Carcass Characteristics in Hanwoo Steers (Fish Oil의 첨가가 한우 거세우의 육성성적, 배최장근의 지방산 조성 및 도체특성에 미치는 영향)

  • Park, B.K.;Shin, J.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.51-58
    • /
    • 2007
  • Twenty Hanwoo steers (average body weight=440.8±32.4kg) were used to investigate the effects of fish oil supplementation on growth performance, fatty acid composition of longissimus muscle and carcass characteristics. The experiment was done with two treatment groups; FO-0, without fish oil and FO-3, supplemented with 3% fish oil. Total gain and average daily gain (ADG) of steers were similar between two groups. Fish oil supplementation had no effects on contents of protein, ether extract and ash in longissimus muscle. Contents of isoleucine and glycine in longissimus muscle were decreased by fish oil supplementation (p<0.05), but content of cystein was increased by fish oil supplementation (p<0.05). Fish oil supplementation decreased contents of myristic acid and eicosenoic acid in longissimus muscle (p<0.05), but increased contents of oleic acid and arachidonic acid in longissimus muscle (p<0.05). Contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in longissimus muscle were increased by fish oil supplementation p<0.05). Carcass weight, back fat thickness, rib-eye area, yield index and yield grade were similar between two groups. Meat color was improved by fish oil supplementation (p<0.05), Ratio of quality grade ‘1 or over’ increased by fish oil supplementation. Therefore, the present study indicating that fish oil supplementation had positive effects on content of oleic acids in relation to flavor of beef, contents of EPA and DHA in relation to human health and ratio of quality grade ‘1 or over’.

A Study on the Classifying Quality Standard by Comparison with Physicochemical Characteristics of Virgin, Pure, Pomace Olive Oil (버진, 퓨어, 포마스 올리브유의 이화학적인 특성 비교를 통한 품질등급 구분에 관한 연구)

  • Cho, Eun-Ah;Lee, Young-Sang
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.3
    • /
    • pp.339-347
    • /
    • 2014
  • This study investigated the classification of olive oils that are mainly distributed in Korea via imports. The fatty acid contents, degree of color, pigments, anti-oxidants, and sterol contents are analyzed on the different types of olive oil as follows: 10 kinds of extra virgin olive oil, 5 kinds of pure olive oil, and 5 kinds of refined olive-pomace oil. As a result of fatty acid analysis, the majority of oleic acid ($C_{18:1}$) and palmitic acid ($C_{16:0}$), and minority of linoleic acid ($C_{18:2}$) and stearic acid ($C_{18:0}$) were detected without any significant differences between the grades of olive oils. The UV spectrum is related to the ${\Delta}K$, and it is a part of the analysis factor for the purity and degree of degradation of the oil. Extra virgin olive oil had ${\Delta}K$ of almost 0, pure olive oil had 0.07~0.12, and refined olive-pomace oil had 0.1~0.13. These differed from extra virgin oil, and the pure or pomace oil ${\Delta}K$ had a confirmed distinct difference. The color degrees of chlorophyll with a low $L^*$ value and $(-)a^*$ (green) and carotenoid with $(+)b^*$ (yellow) were confirmed to have correlation between extra virgin and other olive oils. To compare chlorophyll and carotenoid as natural pigment in olive oils, 417 nm and the ratio of the absorbance at 480 nm (417/480) was calculated at 1.62 of extra virgin, 1.85 of pure olive oil, and 3.32 of refined olive-pomace oil. Therefore, it will be possible to distinguish when the extra virgin or pure olive oil are mixed with olive-pomace oil. The total amount of tocopherol, an anti-oxidant, were 19.06 in extra virgin, 10.91 in pure olive oil, and 27.88 in refined olive-pomace oil. The high content of tocopherol in pomace oil caused recovery of solvent extraction from olive pulp. Thus, extra virgin oil and pure olive oil were distinguished by olive-pomace oil. Polyphenol compounds in extra virgin olive oil measured high only in ferulic acid with 0.543 mg/kg, caffeic acid with 0.393 mg/kg, and other vanillic acid, vanillin, and p-coumaric acid had similar amount of 0.3 mg/kg. All grade of olive oils had the highest ${\beta}$-sitosterol content. Af (Authenticity factor) value were estimated with campesterol and stigmasterol content ratio (%). Af value was 19.2 in extra virgin olive oil, 17.1 in pure olive oil, 16.9 in refined olive-pomace oil, which were distinctive from sunflower oil with 3.7, corn oil with 2.4, and soybean oil with 2.0. It can provide important indicator of olive oil adulteration with other cheap vegetable oils. The results of this study can be used as a database for the classification of olive oil grade and distinguishing between the different types of oils.

Analyses of the Volatile Flavor Composition of Burdock (Arctium lappa L.) Leaves according to Harvesting Season (채취시기에 따른 우엉 잎의 휘발성 향기성분 분석)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.2
    • /
    • pp.220-228
    • /
    • 2018
  • This study investigated the chemical composition of burdock (Arctium lappa L.) leaves essential oil, and the quantitative changes of the major terpene compounds according to the specific harvesting season. The essential oils obtained by the hydrodistillation extraction (HDE) method from the aerial parts of the burdock leaves were analyzed by gas chromatography (GC) and GC-mass spectrometry (GC-MS). The essential oil composition of this plant was characterized by the higher content of phytol and 6,10,14-trimethyl-2-pentadecanone. Seventy seven (98.28%) volatile flavor compounds were identified in the essential oil from the burdock leaves harvested during the spring season of 2012, and phytol (33.47%) and 6,10,14-trimethyl-2-pentadecanone (32.47%) were the most abundant compounds. Eighty eight (99.08%) compounds were identified in the essential oil from the leaves harvested during the autumn season of 2012, and in this case, phytol (37.35%) and 6,10,14-trimethyl-2-pentadecanone (34.67%) were also the most abundant compounds. These two volatile components were confirmed as the major oil components of the burdock leaves during the time of any harvest. The ratio between the two components contained in the burdock essential oils did not differ significantly by harvesting season. But overall, the essential oil harvested during the spring season contained 65.94% of the two major components, while for the essential oil harvested during the autumn season, the total amount of these two major components was 72.02%. While the main ingredients of the essential oils were found to be unchanged from one harvest time to the next, it was found to differ in content. For the burdock leaves, the quality index of the volatile constituents according to the harvest time would be more useful for utilizing the total quantity other than the proportion between phytol and 6,10,4-trimethyl-2-pentadecone.

Optimization of the Fish Sausage Added with Olive Oil (올리브 오일을 첨가한 어육 소시지의 최적화 연구)

  • Lee, HeeJeong;Joo, Nami
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.4
    • /
    • pp.706-715
    • /
    • 2014
  • The purpose of this study was to determine the optimal mixing ratio of Alaska Pollack (Theragra chalcogramma) and olive oil in the preparation of sausage. The experiment was designed according to the central composite design for estimating the response surface, which demonstrated 10 experimental points including 2 replicates for Alaska Pollack and olive oil. The physical, mechanical and sensory properties of test materials were measured. A canonical form and perturbation plot showed the influence of each ingredient on the final product mixture. Measurement results of the physical and mechanical properties showed a significant increase or decrease in the following properties: dough sweetness (p<0.05); sausage L (p<0.05), a (p<0.001), and b (p<0.01); hardness (p<0.01), chewiness (p<0.05), and gumminess (p<0.01). Also, the sensory measurements showed a significant improvement in color (p<0.05), flavor (p<0.01), taste (p<0.001), tenderness (p<0.05), chewiness (p<0.01), mositness (p<0.05), and overall quality (p<0.01). As a result, the optimum formulation by numerical and graphical methods was calculated as Alaska Pollack 35.74 g and olive oil 7 g.

Effects of Dietary Conjugated Linoleic Acid (CLA) and Oil Containing Unsaturated Fatty Acid Supplementation on Egg Production Rate and Quality in Laying Hens (산란계 사료내 Conjugated Linoleic Acid(CLA)와 불포화지방산 함유 Oil의 첨가가 산란율과 계란의 품질에 미치는 영향)

  • Kim, H.J.;Yoo, J.S.;Shin, S.O.;Cho, J.H.;Chen, Y.J.;Huang, Y.;Kim, Y.J.;Whang, K.Y.;Yang, M.S.;Kim, D.J.;Kim, I.H.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.2
    • /
    • pp.131-136
    • /
    • 2008
  • This study was conducted to investigate the effects of dietary conjugated linoleic acid (CLA) and oil containing unsaturated fatty acid supplementation on egg production and quality in laying hens. Two hundred-eighty eight, 36 week old ISA brown commercial layer, were employed in a 5 week feeding trial. Dietary treatments are 1) BO (basal diet + 1% soybean oil + 1% oat), 2) BS (basal diet + 1% safflower oil + 1% oat), 3) BF (basal diet + 1% free fatty acid + 1% oat), 4) CD (basal diet + 1% CLA containing diglyceride + 1% oat), 5) CT (basal diet + 1% CLA containing triglyceride + 1% oat) and 6) CP (basal diet + 1% CLA by-product + 1% soybean oil). For overall period, hen-day egg production was not significant among treatments (P>0.05). Egg shell breaking strength at 3 weeks in CP treatment was significantly lower than BS, BF, CD and CT treatments (P<0.05) and that at 4 weeks in BO and CP treatments was significantly lower than others (P<0.05). Egg shell thickness at 3 and 4 weeks in CP treatment was significantly lower than BS, BF, CD and CT treatments (P<0.05). Egg weight at 3 and 4 weeks in CP treatment was significantly lower than others (P<0.05). Yolk height at 4 weeks in BF and CT treatments was significantly highest compared to BO, CD and CP treatments (P<0.05) and among BO, CD and CP treatments, that in BO and CD treatments was significantly higher than CP treatment (P<0.05). At 4 weeks, yolk color in CP treatment was significantly higher than BO and BS treatments (P<0.05). Haugh unit at 3 and 4 weeks in BO and CP treatments was significantly lower than others (P<0.05). In conclusion, supplementing CLA and oil containing unsaturated fatty acid for laying hens improved egg shell breaking strength, egg shell thickness, egg weight, yolk height, yolk color and haugh unit.