• Title/Summary/Keyword: Oil production

Search Result 1,672, Processing Time 0.027 seconds

Effects of Perilla Oil and Tuna Oil on Lipid Metabolism and Eicosanoids Production in Rats (들기름과 참치유의 섭취가 흰쥐의 지방대사에 Eicosanoids 생성에 미치는 영향)

  • 김우경
    • Journal of Nutrition and Health
    • /
    • v.29 no.7
    • /
    • pp.703-712
    • /
    • 1996
  • This study planned to compare the effects of source and amount of dietary n-3 fatty acid, tuna oil and perilla oil, on lipid metabolism and eicosanoids production in Spargue-Dawley strain male rats. Weaning rats were fed 5 different experimantal diets for 4 weeks. (S : beef tallow 50%+sesame oil 50%, T1 : beef tallow 50%+sesame oil 40%+tuna oil 10%, T2 : beef tallow 50%+sesame oil 25%+tuna oil 25%, P1 : beef tallow 50%+sesame oil 40%+perilla oil 10%, P2 : beef tallow 50%+sesame oil 25%+perilla oil 25%) Food intake was higher in T2 group than in other groups, but body weight gain and food efficiency tate were not different among groups. Plasma total lipid and triglyceride were significantly lower in groups fed perilla oil as much as groups fed tuna oil than in S. But tuna oil reduced plasma cholesterol level more than perilla oil. Liver total lipid per unit, cholesterol and triglyceride were not affected by dietary fat sources. Peroxisomal $\beta$-oxidation was higher in T1 and T2 than in P1 and P2. Activities of glucose 6 phosphate dehydrogenase and malic enzyme were lower in T1 and T2 than in group fed sesame oil only. Plasma TXB2 was affected by n-3 fatty acid consumption, and it was lower in perilla oil groups as much as tuna oil groups than in S. But 6-keto PGF1$\alpha$ was not different among experimental groups. The results of this study indicated that tuna oil and perilla oil both decreased plasma lipids, however, the mechanism may be different. And tuna oil and perilla oil had a similar effects on eicosanoids production.

  • PDF

Effect of Monensin and Fish Oil Supplementation on Biohydrogenation and CLA Production by Rumen Bacteria In vitro When Incubated with Safflower Oil

  • Wang, J.H.;Choi, S.H.;Yan, C.G.;Song, M.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.221-225
    • /
    • 2005
  • An in vitro study was conducted to examine the effect of monensin or fish oil addition on bio-hydrogenation of $C_{18^-} unsaturated fatty acids and CLA production by mixed ruminal bacteria when incubated with safflower oil. Commercially manufactured concentrate (1%, w/v) with safflower oil (0.2%, w/v) were added to mixed solution (600 ml) of strained rumen fluid and McDougalls artificial saliva (control). Monensin $Rumensin^{(R)}$, 10 ppm, w/v, MO), mixed fish oil (0.02%, w/v, absorbed to 0.2 g alfalfa hay, FO) or similar amounts of monensin and fish oil (MO+FO) to MO and FO was also added into the control solution. All the culture solutions prepared were incubated in the culture jar anaerobically at $39^{\circ}C$ up to 12 h. Higher pH (p<0.047) and ammonia concentration (p<0.042) were observed from the culture solution containing MO at 12 h incubation than those from the culture solutions of control or FO. The MO supplementation increased (p<0.0001-0.007) propionate proportion of culture solution but reduced butyrate proportion at 6 h (p<0.018) and 12 h (p<0.001) of incubations. Supplementation of MO or MO+FO increased (p<0.001) the proportions of $C_{18:2}$. The MO alone reduced (p<0.022-0.025) the proportion of c9,t11-CLA compared to FO in all incubation times. The FO supplementation increased the proportion of c9,t11-CLA. An additive effect of MO to FO in the production of c9,t11-CLA was observed at 6 h incubation. In vitro supplementation of monensin reduced hydrogenation of $C_{18^-}$UFAs while fish oil supplementation increased the production of CLA.

Oil Spot Generative Formation of Oil Spot Denmoku (유적 천목의 유적 발생 구조)

  • Jung, Jong-Heuk;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.619-625
    • /
    • 2006
  • The study was intended to investigate production tools and conditions of oil spot following calculating optimal composition of oil spot tenmoku glaze which can be produced at 1250$\sim$l260$^{\circ}C$. Since oil spot is influenced by the viscosity of glaze, viscosity of various glazes fit for oil spot production was determined by an SciGlass 6.0-based calculating method. Applied amount and calcinating conditions of the resulting substance of oil spot, $Fe_2O_3$, were analyzed. As a result, the viscosity of the glaze durable at 1260$^{\circ}C$ was found to range from 4.2 to 4.4, natural cooling was used after oxidizing calcinations at 1260$^{\circ}C$ for an hour, and the best oil spot tenmoku was produced by the natural cooling process after 1 h calcinations at 1150$^{\circ}C$ in the middle of natural cooling. Also, the study showed that thickness of glaze was found to have an effect on the production of oil spot and resulting oil spot was filled mostly with $Fe_2O_3$.

A Case Study of the Appropriate Measure of Herbei Spirit Oil Pollution Damages on the Hanging and Floating Netcage Aquaculture Fisheries (허베이스피리트호 유류오염피해배상에서 수하식 및 가두리식 양식어업의 피해정도사정 사례)

  • Kang, Young-Joo;Kim, Ki-Soo
    • The Journal of Fisheries Business Administration
    • /
    • v.44 no.1
    • /
    • pp.15-24
    • /
    • 2013
  • Recently the Korean court accepts two typies of fisheries damages caused by oil pollution.. One is the direct loss of fisheries production originated from pollution of oil spillover. The other is the indirect loss of fisheries production originated from governmental measure of restricting fishing activities because of safety of marine product of oil spillover areas. The paper tries to suggest the appropriated measure of oil pollution damages of hanging and floating netcage aquaculture fisheries using the court judgement for responsibility restriction on Herbei Spirit Case. The paper tries to compare the damge estimation method of floating netcage aquaculture fisheries with that of natural aquaculture fisheries using conventional theory of the population biology of living resources characterized with age distribution.

Stimulation of Cephalosporin C Production by Acremonium chrysogenum M35 with Fatty Acids

  • Kim Jong-Chae;Kang Seong-Woo;Lim Jung-Soo;Song Yoon-Seok;Kim Seung-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1120-1124
    • /
    • 2006
  • Supplementation with rice oil and its major components (oleic acid and linoleic acid) was found to have a significant influence on cephalosporin C (CPC) production and cell growth by A. chrysogenum M35 in shake flask cultures. Five percent (v/v) rice oil had the most robust effect and 5% (v/v) oleic acid was the second most efficient on cell growth, whereas 3% (v/v) linoleic acid was found to be optimal for CPC production. Rice oil, oleic acid, and linoleic acid also significantly improved the rates of glucose consumption. When glucose was almost consumed, CPC production was initiated and, on the addition of rice oil, lipase activity increased steadily to 1.56 U/ml for 4 days. These results suggest that rice oil and fatty acids are used as carbon source to produce CPC by A. chrysogenum M35. Moreover, a mixture, composed of 40% (v/v) oleic acid and 60% (v/v) linoleic acid, had the strongest stimulatory effect on CPC production, due to a synergistic effect of the two fatty acids. Consequently, the maximum CPC titer (7.44 g/l) was improved about 4.5-fold.

Performance of Pilot-Scale Biodiesel Production System (파일럿 규모의 바이오디젤 생산공정의 실증연구)

  • Jeong, Gwi-Taek;Park, Jae-Hee;Park, Seok-Hwan;Park, Don-Hee
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • Biodiesel (fatty acid alkyl esters), which is produced from sustainable resources such as vegetable oil, animal fat and waste oils, have used to as substitutes for petro-diesel. In this study, we investigate the performance of 30 L and 300 L pilot-scale biodiesel production system using alkali-catalyst transesterification from soybean oil and rapeseed oil produced at Jeju island in Korea. The 30 L-scale biodiesel production was performed to in the condition of reaction temperature $65^{\circ}C$, catalyst amount 1% (w/w) and oil to methanol molar ratio 1 : 8. At that reaction condition, the fatty acid methyl ester contents of product are above 98% within reaction time 30 min. Also, the conversion yield of over 98% was obtained in 300 L-scale biodiesel production system using rapeseed oil and soybean oil. The quality of biodiesel produced from reaction system was satisfied to recommended quality standard of Korea. Our results may provide useful information with regard to the scale-up of more economic and efficient biodiesel production process.

Microwave Assisted Energy Efficient Biodiesel Production from Crude Pongamia pinnata (L.) Oil Using Homogeneous Catalyst

  • Kumar, Ritesh;Sethy, A.K.
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Microwave assisted biodiesel production from crude Pongamia pinnata oil using homogeneous base catalyst (KOH) was unsuccessful because of considerable soap formation. Therefore, a two step process of biodiesel production from high free fatty acid (FFA) oil was investigated. In first step, crude P. pinnata oil was acid catalyzed using $H_2SO_4$ and acid value of oil was reduced to less than 4 mg KOH/g. Effect of sulfuric acid concentration, alcohol-oil molar ratio and microwave irradiation time on acid value of oil was studied. Result suggested that 1.5% $H_2SO_4$ (w/w), 6:1 methanol oil molar ratio and 3 min microwave irradiation time was sufficient to reduce the acid value of oil from 12 and 22 mg KOH/g to 2.9 and 3.9 mg/KOH/g, respectively. Oil obtained after pretreatment was subsequently used for microwave assisted alkali catalyzed transesterification. A higher biodiesel yield (99.0%) was achieved by adopting two step processes. Microwave energy efficiency during alkali catalyzed transesterification was also investigated. The results suggested a significant energy saving because of reduced reaction time under microwave heating.

Production of Volatile Oil Components by Cell Culture of Agastache rugosa O. Kuntze

  • Shin, Seung-Won;Kim, You-Sun;Kang, Chan-Ah
    • Natural Product Sciences
    • /
    • v.7 no.4
    • /
    • pp.120-123
    • /
    • 2001
  • To develop systems for economic production of useful essential oil compounds, callus was induced from the seedlings of Agastache rugosa and cultured on MS medium. The volatile oil fraction was extracted from the callus and investigated by mean of GC-MS. The composition of the oil was compared with that of the mother plant. As a result, sixty five compounds including ferruginol were identified in the essential oil fraction. The main component of the oil from the leaves of Agastache rugosa was methyl chavichol (53.6%). Methyl jasmonate and jasmonic acid were added to the culturing cell suspension, separately and the composition of induced oil were compared. The oils from cultured cells treated with jasmonates showed considerably different patterns. Especially, the peak of estragole was found in callus oil after treatment with methyl jasmonate as though the amount was limited to 0.58%. In general, the TIC pattern of GC-MS of the callus oil became more similar to the oil from the leaves after elicitation.

  • PDF

History of edible oils and fats industry in Korea (우리나라 식용유지 산업의 발자취)

  • Shin, Hyo-Sun
    • Food Science and Industry
    • /
    • v.50 no.4
    • /
    • pp.65-81
    • /
    • 2017
  • In Korea, sesame oil has been used as a flavor source mainly by edible oil since ancient times, and it has been used by domestic screw pressing. In the 1960's, the demand for edible oils and fats increased significantly due to the improvement of national income and changes in food consumption patterns. In the early 1970's, a few edible oil manufacturing companies with modern solvent extraction and refining plants were established. In Korea, edible oil manufacturers account for more than 85% of employees with 50 or fewer employees. In Korea, there is a very shortage of raw materials for edible oils and fats, domestic production of edible oil is decreasing year by year and import volume is continuously increasing. While importing the edible oil bearing ingredients including soybean and extracted oil in the past, recently mainly imports crude oil and refines it in Korea. Soybean oil, palm oil and tallow account for 70~90% of total imported edible oils. Due to the recent well-being trend, the demand for olive, canola and grapeseed oils as household edible oil has increased and the production of blended oil has been greatly increased. Since the late 1980's, people have recognized edible oil and fat as a food instead of seasoning ingredient and have increased their edible oil and fat intake in Korea. Since the early 2000's, refined oil and fat products produced in Korea have been exported and is increasing every year.

Study of Process for Offshore LNG Production (해상에서의 LNG 생산을 위한 공정 고찰)

  • Kim, Seung-Hyuk;Ha, Mun-Keun;Kim, Byung-Woo;Sadasivam, M.;Koo, Keun-Hoe
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.119-123
    • /
    • 2002
  • Liquefied Natural Gas(LNG) continues to attract modern gas industries as well as domestic markets as their main energy source in the recent years. This is mainly because LNG is inherently cleaner and more energy efficiency than other fuels. Offshore LNG production plant is of interest to many oil producing companies all over the world. This article discuss about the production process encountered while developing such a production facility. Typical offshore oil and gas processing required for oil stabilization and other optional units that can be added to the facilities. The production process can broadly be divided into five major units namely, (i) Oil Stabilization unit, (ii) Gas Treatment unit, (iii) Methane Recovery unit, (iv) Distillation unit and (v) LNG Liquefaction unit. The process simulation was carried out for each unit with a given wellhead composition. The topside facilities of offshore LNG production plant will be very similar to the process adopted in offshore processing platform along with the typical onshore LNG production plant. However, the process design problems associated with FPSO motion to be taken care of while developing floating LNG production plant.

  • PDF