• Title/Summary/Keyword: Oil flow

Search Result 1,068, Processing Time 0.024 seconds

A Path-based Traffic Flow Simulation Model for Large Scale Network (기종점 기반 대규모 가로망 교통류 시뮬레이션 모형)

  • 조중래;홍영석;손영태
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.3
    • /
    • pp.115-131
    • /
    • 2001
  • The Purpose of this study is to develop a simulation model for large-scale network with interrupted flow as well as uninterrupted flow. The Cell Transmission(CT) theory is used to simulate traffic flow. Flow transition rules have been newly developed to simulate traffic flows at merging and diverging sections, and signalized intersections. In the model, it is assumed that dynamic OD table is exogenously given. Simulation results for toy network shows that the model can explain queue dynamics not only in signalized intersections of urban arterials, but also in merging and diverging sections of freeway. In case study, the model successfully simulated traffic flows of 145,000 vehicles on CBD network of city of Seoul with 74 traffic zones, 133 signalized intersections among 395 nodes and 1110 links.

  • PDF

HEAT PIPE TYPE EXHAUST HEAT RECOVERY SYSTEM FOR HOT AIR HEATER

  • Kang, G.C.;Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.654-661
    • /
    • 2000
  • Area of greenhouse increases rapidly up to 45,265ha by the year of 1998 in Korea. Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat of the oil combusted in the furnace. In order to recapture the heat of this exhaust gas and to recycle for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The exhaust heat recovery system was made for space heating in the greenhouse. The system consisted of a heat exchanger made of heat pipes, ${\emptyset}15.88{\times}600mm$ located in the rectangular box of $600{\times}550{\times}330mm$, a blower and air ducts. The rectangular box was divided by two compartments where hot chamber exposed to exhaust gas in which heat pipes could pick up the heat of exhaust gas, and by evaporation of the heat transfer medium in the pipes it carries the heat to the cold compartment, then the blower moves the heat to greenhouse. The number of heat pipe was 60, calculated considering the heat exchange amount between flue gas and heat transfer capacity of heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/hr depending on the inlet air temperature of 12 to $-12^{circ}C$ respectively when air flow rate $1,100\textrm{m}^3/hr$. The exhaust gas temperature left the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the air and the flue gas, the temperature difference was collected by the air and the warm air temperature was about $60^{circ}C$ at the air flow rate of $1,100\textrm{m}^3/hr$. This heat pipe type exhaust heat recovery system can reduce fuel cost by 10% annually according to the economic analysis.

  • PDF

Development of Microbubble Flotation Technique for the Production of High Grade Coal (Microbubble Flotation에 의한 고품위(高品位) 석탄생산(石炭生産) 기술(技術) 개발(開發))

  • Han, Oh-Hyung;Park, Sin-Woong;Kim, Byoung-Gon
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.44-52
    • /
    • 2012
  • The purpose of this study is to confirm the possibility of obtaining high grade coal from fixed carbon 20.68% coal. Also, the mineralogical, physical/chemical and liberation characteristics was found with the aim of decrease in ash amount, during the pre-processing of clean coal technology. In this study, batch flotation and microbubble column flotation that was appropriate for the processing of fine particles was used with the variation in kinds and quantity of frother, collector and depressant. Also grinding time, air flow rate and feeding rates were examined. As a result of batch flotation, using pulp density 20%, collector DMU-101+dodecyl amine(100 mL/ton), frother pine oil (200 mL/ton), depressant sodium silicate(1 kg/ton), obtained the result of ash rejection 81.55% and combustible recovery 70.23%. In result of microbubble column flotation, the result was ash rejection 83.85% and combustible recovery 70.42% under the condition of pulp density 5%, grinding time 5 min. collector DMU-101+DDA(100 mL/ton), frother AF65(5.4 L/ton), depressant SMP(3.5 kg/ton), wash water(360 mL/min.) and air flow rate(1,197 mL/min.).

Characterization of Ceramic Composite-Membranes Prepared by TEOS-PEG Coating Sol (TEOS-PEG계 Sol-Gel코팅에 의한 세라믹 분리 막의 제조 및 특성)

  • Kim, Tae-Bong;Choi, Se-Young;Kim, Goo-Dae
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.165-170
    • /
    • 2005
  • Sol-gel methods offer many advantages over conventional slip-casting, including the ability to produce ceramic membranes. They are purer, more homogeneous, more reactive and contain a wider variety of compositions. We produced ormosil sol using sol-gel process under various molecular weight of polymer species[polyethylene glycol(PEG)] in total system [Tetraethyl ortho silicate(TEOS)-polyethylene glycol(PEG)]. The properties of as-prepared ormosil sol such as viscosity and gelation time are characterized. Also, the ceramic membrane was prepared by dip-coating with synthetic sol and its microstructure was observed by scanning electron microscopy. The permeability and rejection efficiency of membrane for oil/water emulsion were evaluated as cross­flow apparatus. The ormosil sol coated membrane was easily formed by steric effect of polymer and it improved flux efficiency because infiltration into porous support decreased. Its flux efficiency was elevated about $200\;l/m^2h$ compared with colloidal sol coated membrane at point of five minutes from starting test.

Manufacturing of Monodisperse Pectin Hydrogel Microfibers Using Partial Gelation in Microfluidic Devices (미세유체 장치에서 부분젤화법을 이용한 단분산성 펙틴 하이드로젤 미세섬유의 제조)

  • Jin, Si Hyung;Kim, Chaeyeon;Lee, Byungjin;Shim, Kyu-Rak;Kim, Dong Young;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.270-278
    • /
    • 2017
  • This study introduces a method to easily fabricate highly monodisperse pectin hydrogel microfibers in a microfluidic device by using partial gelation. The hydrodynamic parameters between the pectin aqueous solution and the calcium ions containing oil solution are precisely controlled to form a stable elongation flow of the pectin aqueous solution, and partial gelation of the pectin aqueous solution is performed by the chelating of the calcium ions at the interface between the two phases. The partially gelled pectin aqueous solution is phase-separated from the oil solution in an aqueous calcium chloride solution outside the microfluidic device and is completely gelled to produce monodisperse pectin hydrogel microfibers. The thickness of the pectin hydrogel microfiber is controlled in a reproducible manner by controlling the volumetric flow rate of the initially injected pectin aqueous solution. The pectin hydrogel microfibers were 200 to 500 micrometers in diameter and had a coefficient of variation below 5% under all thickness conditions, indicating that the pectin hydrogel microfibers produced by partial gelation are highly monodisperse. In addition, biomaterials can be immobilized to the pectin hydrogel microfibers produced by a single process, demonstrating the possibility that our pectin hydrogel microfiber can be used as carriers for biomaterials or tissue engineering.

Supercritical $CO_2$ Extraction of Sesame Oil with High Content of Tocopherol (초임계 이산화탄소를 이용한 토코페롤 고함유 참기름 추출)

  • Ju Young-Woon;Son Min-Ho;Lee Ju-Suk;Byun Sang Yo
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.210-214
    • /
    • 2005
  • The characteristics of sesame oil containing one of natural antioxidant, ' $\gamma$-tocopherol', were studied with the supercritical $CO_2$ extraction. Although $\gamma$-tocopherol has a lower vitamin E value in biological systems than $\alpha$-tocopherol, it is a more potent antioxidant with in oils. For the research of various factors influence to the $\gamma$-tocopherol contents increment, we have checked roasting time and temperature, as well as pressure, temperature and flow rate of supercritical fluid. As a result, we found that the $\gamma$-tocopherol content was maintained constant under the condition of roasting temperature over $200^{\circ}C$. With the longer roasting time, $\gamma$-tocopherol content was increased. Except 250 bar, the $\gamma$-tocopherol content was maintained constant under the condition of the various pressure of supercritical fluid. But $\gamma$-tocopherol content was increased with lower flow rate of supercritical fluid from 1 $m{\ell}$/L to 3 $m{\ell}$/L. When the extraction performance with the supercritical fluid was compared to the conventional compressed extraction, $\gamma$-tocopherol content was increased up to 1.6 times.

Detection and quantitation of Bacillus cereus, Staphylococcus aureus, Salmonella Typhimurium and Escherichia coli O157:H7 by droplet digital PCR (Droplet Digital PCR을 이용한 Bacillus cereus, Staphylococcus aureus, Salmonella Typhimurium과 Escherichia coli O157:H7의 검출 및 정량)

  • Kim, Jin-Hee;Yoon, JinSun;Lee, Da-Young;Kim, Dongho;Oh, Se-Wook
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.454-460
    • /
    • 2016
  • In this study, we investigated the possibility of Droplet digital PCR (ddPCR) for detection of foodborne pathogens. ddPCR combines partitioning of PCR reactions into several thousands or millions of individual droplets in a water-oil emulsion, and counting of positive PCR reaction using flow cytometry. Four species of foodborne pathogens, Bacillus cereus, Staphylococcus aureus, Salmonella Typhimurium and Escherichia coli O157:H7, were used to quantify the target sequence with each of the designed primers and double stranded DNA-binding Evagreen dye. All tested foodborne pathogens showed a detection limit ranging from $100fg/{\mu}L$ to $10ng/{\mu}L$. It was concluded that ddPCR could be used to detect very low concentrations of foodborne pathogens from complex food matrices. For multi-detection of target pathogens, we also tested the samples using multiplex ddPCR and obtained successful results.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010 (설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Kim, Su-Min;Kwon, Young-Chul;Baik, Yong-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.

Hydrogeological Stability Study on the Underground Oil Storage Caverns by Numerical Modeling (수치모델링을 이용한 지하원유비축시설의 수리지질학적 안정성 연구)

  • 김경수;정지곤
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.35-51
    • /
    • 2002
  • This study aims to establish the methodology for design of an optimum water curtain system of the unlined underground oil storage cavern satisfying the requirements of hydrodynamic performance in a volcanic terrain of the south coastal area. For the optimum water curtain system in the storage facility, the general characteristics of groundwater flow system in the site are quantitatively described, i.e. distribution of hydraulic gradients, groundwater inflow rate into the storage caverns, and hydrogeologic influence area of the cavern. In this study, numerical models such as MODFLOW, FracMan/MAFIC and CONNECTFLOW are used for calculating the hydrogeological stability parameters. The design of a horizontal water curtain system requires considering the distance between water curtain and storage cavern, spacing of the water curtain boreholes, and injection pressure. From the numerical simulations at different scales, the optimum water curtain systems satisfying the containment criteria are obtained. The inflow rates into storage caverns estimated by a continuum model ranged from about 120 m$^3$/day during the operation stage to 130~140m$^3$/day during the construction stage, whereas the inflow rates by a fracture network model are 80~175m$^3$/day. The excavation works in the site will generate the excessive decline of groundwater level in a main fracture zone adjacent to the cavern. Therefore, the vertical water curtain system is necessary for sustaining the safe groundwater level in the fracture zone.

Autogenous Shrinkage Mock-up Test of High Performance Concrete by Emulsified Refined Cooking Oil (유화처리 정제식용유를 사용한 고성능 콘크리트의 자기수축 Mock-up 실험)

  • Jo, Man-Ki;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.307-315
    • /
    • 2016
  • The aim of this research is analyzing the fundamental properties and autogenous shrinkage reducing performance of 70 and 100MPa grade high performance concrete including emusified refined cooking oil(ERCO) under the mock-up conditions. As a results of experiment, the mixture contained 0.5% of ERCO showed slightly decreased slump flow while the slump was increased and segregation resistance performance was improved as 2.5 of EIS. For air content, all mixtures satisfied target air content with increased unit weight and delayed setting time with ERCO addition. In the case of compressive strength, when ERCO was added 0.5%, the result of approximately 5 to 10% of increased compressive strength was observed. For the autogenous shrinkage, ERCO contributed on 20-30% of shrinkage reducing performance comparing to Plain mixture without ERCO. It is considered that capillary pore filling action of soap particles occurred by the reaction of ERCO in cement paste between fatty aicd and calcium hydroxide contributed the shrinkage reducing performance. Based on these mock-up test results, application of the high performance concrete mixture with ERCO on CFT actual structure was decided.