• 제목/요약/키워드: Oil film pressure

검색결과 161건 처리시간 0.023초

동하중(動荷重)을 받는 선박용(船舶用) 디젤 엔진의 저널 베어링 유막해석(油膜解析)에 관한 연구(硏究) (The Oil Film Analysis of Dynamically Loaded proceeding Bearing in Diesel Engine)

  • 차지협;이상수;김정렬;김주태;김종석
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.160-165
    • /
    • 2005
  • The proceeding bearings of marine diesel engine are affected by dynamic loads from the cylinder gas pressure and the inertia force from the crank mechanism. Oil film must support the load of the shaft and it also must protect the proceeding and the bearings from damage. This study uses Goenka's new curve fit to carry out the theoretical analysis of oil film in proceeding bearings for MAN B&W 12K90MC-C and Hyundai Heavy Industry Co., Ltd HiMSEN H21/32 Engine. The applied engine's analysis results show the behavior of the proceedings in main and crank pin bearings. The results of this study will be the proper criteria for the proceeding bearings design and be available for development of the new technology in the proceeding bearing and for the high strength lining coating.

  • PDF

유압 피스톤 펌프의 실린더 블록과 밸브 플레이트 사이의 유막 특성 (Fluid Film Characteristics between Cylinder Block and Valve Plates in Oil Hydraulic Piston Pumps)

  • 정재연;송규근;오석형;김종기
    • 유공압시스템학회논문집
    • /
    • 제1권2호
    • /
    • pp.8-14
    • /
    • 2004
  • Abstract: In the oil hydraulic piston pumps the clearance between the valve plate and cylinder block plays an important role for volumetric and overall efficiency. Thus, adequate lubricational fluid film is needed for the interface. In this study, fluid film thickness is measured by a gap sensor and a slip ring under operational conditions to observe the behavior of the lubrication mechanism in detail. To investigate the effect according to the valve plate types in view of the fluid film, three different types were designed. Leakage flow rate and shaft torque were also measured to clarify the effect according to the valve plate types. A broad range of experiments were conducted to provide reasonable data on the effect of fluid film. In this experiments two main parameters were found, of which the one is the discharge pressure and the other is valve plate geometry. As a result, we found that the spherical valve plate could get more stable fluid film thickness, maintain good efficiency for high pressure range than the other types.

  • PDF

절단 원추형 Squeeze Film Damper 베어링과 회전축계의 동특성에 관한 연구 (A Study on the Dynamic Characteristics of Truncated Cone Type Squeeze Film Damper Bearing and Rotor System)

  • 윤석철
    • 한국안전학회지
    • /
    • 제12권1호
    • /
    • pp.9-18
    • /
    • 1997
  • This paper is a study on the dynamic characteristics of truncated cone type squeeze film damper(SFD) bearing and rotor system. This model can alter the radial oil film gap which Is Important to the performance of rotor-bearing system and manufactured easily to change the shape concept of traditional circular type SFD bearing. In theoretical analysis, the oil film pressure distribution, the oil film force, the film damping coefficient and the eccentricity ratio, etc. were induced with regard to the film inertia effect. The film damping coefficients and optimum design parameters are calculated. When unbalance parameter U is greater than 0.2, the nonlinear vibration such as "Jump" phenomena appears in the vicinity of rotor critical speed. At this time, the increases of bearing parameter U, journal distance S, Reynolds number Re can control this unstable vibration. The experimental results show that SFD hearing and rotor system which are designed according to the design parameters in the stable region are operated stably in rotational speed 9,600rpm without nonsynchronous behavior.

  • PDF

유막의 온도변화를 고려한 플로팅 링 저어널베어링의 성능해석 (An Analysis of Performance of Floating-Ring Journal Bearing Including Thermal Effects)

  • 김종수;최상규;유광택
    • Tribology and Lubricants
    • /
    • 제17권2호
    • /
    • pp.130-137
    • /
    • 2001
  • In this paper, the thermal effects on the performance of floating ring journal bearing are investigated theoretically. The numerical analyses include pressure drop at inner film due to a centrifugal force, fluid momentum effects of supply oil into inner film and thermal effects in lubricating films. All performance data are presented as the rotating speed of journal from 10,000 rpm to 70,000 rpm.

오일-물-오일 에멜젼막의 Disjoining Pressure에 관한 연구 (Disjoining Process Isotherms for oil-water-oil Emulsion Films)

  • 조완구
    • 대한화장품학회지
    • /
    • 제23권2호
    • /
    • pp.71-96
    • /
    • 1997
  • We have used a novel liquid surface forces apparatus to determine the variation of disjoining pressure with film thickness for dodecane-water-dodecane emulsion films. The LSFA allows measurement of film thicknesses in the range 5-100 nm and disjoining pressure from 0-1500 Pa. Disjoining pressure isotherms are given for films stabilised by the nonionic surfactnat n-dodecyl pentaoxyethylene glycol ether$(C_{12}E_5)$ and n-decyl-$\beta$-D-glucopyranoside($C_{10}- $\beta$-Glu)$ and the anionic surfactant sodium bis(2-ethylhexyl) sulphosuccinate(AOT) in the presense of added electrolyte. For $C_{12}E_5$ and AOT, the emulsion films are indefinitely stable even for the highest concentration of NaCl tested (136.7 Nm) whereas the $C_{10}-{eta}-Glu$ film shows coalescence at this salt concentration. For film thicknesses greater than approximately 20 nm with all three surfactants, the disjoining pressure isotherms are reasonably well described in terms of electrostatic and van der Waals, forces. For the nonionic surfactant emulsion films, the charge properties of the monolayers are qualitatively similar to those seen for foam films. For AOT emulsion films, the monolayer surface potentials estimated by fitting the isotherms are similar to the values of the zeta potential measured for AOT stabilised emulsion droplets. For thin emulsion films certain systems showed isotherms which suggested the presence of an additional repulsive force with a range of approximately 20 nm.

  • PDF

급유구의 형상에 따른 박용엔진 크랭크 핀 베어링의 윤활특성 해석 (Analysis of Crank Pin Bearing with Various Inlet Groove Shape for Marine Engine)

  • 하양협;이득우;김정훈;이성우
    • Tribology and Lubricants
    • /
    • 제14권3호
    • /
    • pp.87-93
    • /
    • 1998
  • Crank pin bearing in two-stroke marine diesel engine is operated under quite severe conditions since the elements are big and heavy and the sliding speed is very slow. Therefore it is very difficult to form oil film. In this paper, two types of bearings with different groove shape are compared. One has circumferential oil groove at lower position and the other has lengthwise oil groove at upper position. Bearing clearance, oil inlet pressure and length to diameter ratio are selected as design parameters. Locus of journal center and minimum oil film thickness are investigated to compare two cases.

윤활유 첨가제에 따른 마멸분 화상해석

  • 서영백;이충엽;박홍식;전태옥
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.180-189
    • /
    • 1998
  • This paper was undertaken to do shape analysis of wear debris on oiliness agent and extreme pressure agent. The lubricating wear test was performed under different experimental conditions using the wear test device was made in our laboratory and were- specimens of the pin on disk type was rubbed in paraffine series base oil by materials, varying applied load, sliding distance, oil additives such as stearine acid, DBDS, TCP. The four shape parameters (50% volumetric diameter, aspect, roundness and reflectivity) on a kind of the additives are different on applied load and sliding distance and Its are affected by absorbed film and reaction film. DBDS and TCP have a role of extreme pressure agent but a role of absorbed film of stearic acid decrease in high load. The maximum wear volume on applied load be in existence in three kinds of the specimens because of reaction characteristics of the additives.

  • PDF

LUBRICATION AND SURFACE DISTRESS OF LOADED TOOTH FLANK OF GEARS

  • Kubo, Arzoh
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1991년도 제13회 학술강연회초록집
    • /
    • pp.1-30
    • /
    • 1991
  • The lubrication state between contacting bodies with rolling and sliding under loaded condition is generally understood by the conception shown in Figure 1. When the lubricating oil film formation between facing bodies is good enough to separate these bodies by the hydrodynamic pressure, this state is called by the expression of "hydrodynamic lubrication". The thickness of oil film is so large that the lubricating oil between facing bodies behaves as fluid and metal-to-metal contact between surface roughness asperities on facing bodies does not occur. When the oil film thickness becomes thinner or when the surface roughness height becomes larger, top of surface roughness asperities on facing bodies reaches very near to each other and there the oil or absorbed oil molecules on the surface of facing bodies behave no more as fluid. Partly metal-to-metal contact of surface roughness asperities occurs. Such lubrication state is called by the expression "mixed-lubrication". When the oil film thickness becomes more thinner or surface roughness height becomes larger, metal-tometal contact or contact via absorbed oil molecules dominate at most of the part in contact zone. Such state is called by the expression "boundary lubrication". Schematic representation of these three regimes of lubrication is shown in Figure 1.rication is shown in Figure 1.

  • PDF

커넥팅 로드 베어링의 EHL에 관한 수치해석 (A Numerical Analysis of the Elastohydrodynamic Lubrication of Connecting Rod Bearings)

  • 김병직;김경웅
    • Tribology and Lubricants
    • /
    • 제12권3호
    • /
    • pp.63-71
    • /
    • 1996
  • The connecting rod bearing, which is subjected to periodical dynamic loading, is an impoRant component of the reciprocating engine. In the operation of this bearing, significant parameters are the oil film thickness and the film pressure. Peak film pressures of 20-30 MPa are not uncommon. So the elastic deformation of the bearing housing can have a significant effect on the bearing performance. In this study, a numerical analysis of connecting rod bearing is investigated. Elastic deformation of the bearing housing is considered in the analysis. Separate hydrodynamic and structural analysis are coupled through a direct iterative process. It is shown that as the result of the elastic deformation of the bearing housing, the eccentricity ratio is increased, and the minimum value of the minimum film thickness and the maximum value of the maximum film pressure are decreased. The variations of rotational speed and cylinder pressure affect the minimum film thickness and the maximum film pressure variations of the connecting rod bearing.

터보차저 공급 오일 압력과 온도가 풀-플로팅 베어링의 동적 거동에 미치는 영향 (Effects of Oil Inlet Pressure and Temperature on the Dynamic Behaviors of a Full-Floating Ring Bearing Supported Turbocharger Rotor)

  • 이인범;홍성기
    • 한국유체기계학회 논문집
    • /
    • 제20권2호
    • /
    • pp.53-62
    • /
    • 2017
  • In this paper, the effect of oil conditions in rotor dynamic behaviors of a FFRB (Fully-Floating Ring Bearing) is investigated. Through the characteristic of a FFRB has two films, it has several advantages such as less friction loss and better stability over a wide speed range. However, it is difficult to supply a oil to the inner film. Thus, turbocharger makers have been paid significant attention to the lubrication of a FFRB because of its importance. This work focuses on the influence of oil inlet pressure and temperature. The methodologies of computational simulation and experimental test were used to estimate the rotor dynamic behaviors. In experimental test, the single-scroll turbocharger for the 1.4L diesel engine was used. The results show that the oil inlet pressure and temperature will place considerable influence on the rotor response. Oil conditions affect RSR (Ring Speed Ratio) which is cause of sub-synchronous vibrations, which also cause of oil whirling and whip even a critical speed. At higher speed range, the phenomenon of self-excited vibrations which is cause of instability of fluid whirl is investigated through the orbit shapes that consist of small orbit and large amplitude orbit. It is shown that some performance of a FFRB can be controlled by the conditions of oil supply. Finally, it was revealed that the oil induced operating conditions will strongly affect the turbocharger rotor dynamics behaviors.