• Title/Summary/Keyword: Oil droplet

Search Result 220, Processing Time 0.023 seconds

Experimental Study on the Droplet Formation in a Microchannel with a Cross Junction (십자형 마이크로 채널 내에서의 액적 형성에 관한 실험적 연구)

  • Park, Jae-Hyoun;Bae, Ki-Hwa;Heo, Young-Gun;Suh, Yong-Kweon
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.2
    • /
    • pp.39-47
    • /
    • 2007
  • This paper describes an experimental study on the droplet formation and the subsequent motion in a microchannel having a cross junction. While one kind of liquid (pure water or water-surfactant mixture) is drawn into a horizontal inlet channel, the other kind (oil) is introduced through two vertical inlet channels. Due to the effect of surface tension on the interface between the two fluids, the droplets of the first fluid are formed near the cross junction. In this study, we have found that the droplet formation is affected even by slight difference in the surface tension. When the surface tension between two fluids is decreased, the droplet size is decreased in order to keep the equilibration between the pressure and the surface tension. In addition, the time interval between each of the droplet formations is decreased and the distance between droplets is also decreased when the surface tension is decreased.

In-droplet preconcentration of microparticles using surface acoustic waves (표면탄성파를 이용한 액적 내 마이크로입자의 농축)

  • Park, Kwangseok;Park, Jinsoo;Jung, Jin Ho;Destgeer, Ghulam;Ahmed, Husnain;Ahmad, Raheel;Sung, Hyung Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.47-52
    • /
    • 2017
  • In droplet-based microfluidic systems, in-droplet preconcentration of a sample is one of the important prerequisites for biochemical or medical analysis. There have been a few studies on preconcentration in a moving droplet, but they are limited to practical applications since 1) their method are time-consuming or 2) they require specific properties such as electric and magnetic properties. In this study, we demonstrated the position control of polystyrene particles of 5 and $10{\mu}m$ in diameter inside a moving water-in-oil droplet using traveling surface acoustic waves. Since the frequencies for effective control of each diameter were found, microparticles with no labels could be utilized. In addition, the proposed method enabled on-demand preconcentration inside a polydimethylsiloxane microchannel. In-droplet preconcentration of microparticles was realized by splitting a mother droplet with manipulated particles at a downstream bifurcation zone. Given these advantages, the proposed system is a promising acoustofluidic lab-on-a-chip platform for preconcentration inside a droplet.

Manufacture and Stability of Low Calorie Mayonnaise Using Gums (검을 이용한 저열량 마요네즈의 제조 및 유화안정성)

  • 이미옥;송영선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.1
    • /
    • pp.82-88
    • /
    • 2003
  • Four kinds of low calorie mayonnaises containing 1.2% of sodium alginate, 1.0% of guar gum, 1.0% and 1.2% of xanthan gum and one control mayonnaise containing 78.5% of oil without gums were manufactured in pilot scale. Fresh control mayonnaise was higher in viscosity and turbidity than low calorie mayonnaise with gums. During storage at -1$0^{\circ}C$, viscosity and turbidity of control mayonnaise decreased sharply, whereas those of low calorie mayonnaise with gums decreased slightly. Scanning electron microscopy showed that fresh mayonnaise was composed of heterogeneous population of dispersed spherical oil droplets (<10 ${\mu}{\textrm}{m}$), and oil droplet size of control mayonnaise was smaller than any other low calorie mayonnaise. During storage at -1$0^{\circ}C$, a shift in oil droplet size toward larger oil droplets was frequently observed in control mayonnaise as a result of coalescence of oil droplets. Oil separation and turbidimetric study also confirmed that coalescence of oil droplets was occurring during this accelerated aging treatments.

Rheology of Decamethylceclopentasiloxane (cyclomethicone) W/O Emulsion System

  • Choi, Min-Hyung;Jeong, So-Ra;Nam, Sang-In;Shim, Sang-Eun;Chang, Yoon-Ho
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.943-949
    • /
    • 2009
  • A highly dispersed W/O emulsion of silicone oil (cyclomethicone)/water system was prepared with a nonionic surfactant. The surface and interfacial tension between the oil and water were characterized in terms of the droplet size distribution and viscosity change of the emulsion. When the dispersed phase concentration was relatively high, the viscosity of the emulsion was rapidly increased and the droplet size of the emulsion was decreased. The rheological behavior of the emulsion system showed non-Newtonian and shear thinning phenomena depending upon the content of the dispersed phase. The droplet size of the emulsion was decreased with increasing surfactant content and water concentration. The relative viscosity of the emulsion was better predicted with the Choi-Schowalter model than with the Taylor model. The value of the complex modulus increased with increasing surfactant concentration. The linear viscoelastic region was expanded with a dispersed phase concentration. According to the change in the viscosity, the behavior was classified into three distinct regions: [I] linear viscoelastic, [II] partially viscoelastic, and [III] viscous. The creep/recovery behaviors in each region were characterized.

N-tetradecane/Water Emulsion as a Low-cost Phase Change Material for Efficient Packaging and Shipping of Vaccines

  • Dao, Van-Duong;Choi, Ho-Suk
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.325-330
    • /
    • 2017
  • This study presents the preparation of n-tetradecane-in-water emulsions with different weight ratios of n-tetradecane and water, and their potential application in packaging and shipping vaccines. The size and distribution of the n-tetradecane droplets are characterized using optical microscopy and light scattering methods, respectively. The thermal properties of the emulsions are determined using the T-history method. In the results, the emulsions, which are comprised of 17 ~ 30 wt% oil, 3 wt% surfactant, and 67 ~ 80 wt% water, are stable and have droplet sizes in the range of 100 to 800 nm. The thermal properties demonstrate that subcooling is prevented through increasing the droplet size. The results indicate that the n-tetradecane/water emulsions containing 25 ~ 35 wt% n-tetradecane, with a melting point of $2{\sim}8^{\circ}C$ and a latent heat of $227.0{\sim}250.8kJ\;kg^{-1}$, are good candidate materials for packaging and shipping vaccines.

The Effect of Coagulation for Dispersion Modelling of Spilled Oil (해상유출유의 분산모델링에 대한 응집효과)

  • 설동관
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.44-52
    • /
    • 2000
  • The dispersion of surface oil is generally described as a break-up of oil slick into small oil droplets. These small droplets are subjected to turbulence and vertical circulation so that it can be entrained into subsurface. Sometimes they tend to be submerged into sea bottom permanently. The diameter of oil droplets is a critical parameter to determine their behavioral characteristics under water surface. At the same time the variations of droplet stability depends on the weathering of it. That is why the weathered oil has different mechanism from the unweathered one. The variability of physical properties of oil including viscosity and density contribute to interfere with effective separation of oil and emulsion droplets in water. Also in the presence of interactions among the droplets there are coalescing or coagulating effects on the dispersion process of droplets.

  • PDF

Energy-saving potential of cross-flow membrane emulsification by ceramic tube membrane with inserted cross-section reducers

  • Albert, K.;Vatai, Gy.;Giorno, L.;Koris, A.
    • Membrane and Water Treatment
    • /
    • v.7 no.3
    • /
    • pp.175-191
    • /
    • 2016
  • In this work, oil-in-water emulsions (O/W) were prepared successfully by membrane emulsification with $0.5{\mu}m$ pore size membrane. Sunflower oil was emulsified in aqueous Tween80 solution with a simple crossflow apparatus equipped with ceramic tube membrane. In order to increase the shear-stress near the membrane wall, a helical-shaped reducer was installed within the lumen side of the tube membrane. This method allows the reduction of continuous phase flow and the increase of dispersed phase flux, for cost effective production. Results were compared with the conventional cross-flow membrane emulsification method. Monodisperse O/W emulsions were obtained using tubular membrane with droplet size in the range $3.3-4.6{\mu}m$ corresponded to the membrane pore diameter of $0.5{\mu}m$. The final aim of this study is to obtain O/W emulsions by simple membrane emulsification method without reducer and compare the results obtained by membrane equipped with helix shaped reducer. To indicate the results statistical methods, $3^p$ type full factorial experimental designs were evaluated, using software called STATISTICA. For prediction of the flux, droplet size and PDI a mathematical model was set up which can describe well the dependent variables in the studied range, namely the run of the flux and the mean droplet diameter and the effects of operating parameters. The results suggested that polynomial model is adequate for representation of selected responses.

Improvement of Emulsion Stability of Food Proteins by Microbial Transglutaminase (미생물유래 transglutaminase를 이용한 식품단백질의 유화안정성 향상에 관한 연구)

  • Lee, Deuk-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.164-170
    • /
    • 2005
  • To improve functional properties of food proteins, homologous or heterologous ${\beta}-casein$ and 11S globulin(glycinin) from animal and vegetable proteins, respectively, were bio-hybridized using transglutaminase(MTGase). Susceptibility was confirmed by SDS-PAGE, particle size analyzed, and emulsion stability tested using Reddy and Fogler method, To determine how bio-hybridized protein influences emulsion stability, protein bound on oil droplet was investigated using Scanning Electron Microscopy (SEM). formation of bio-hybridized protein band was detected among homologous and heterologous proteins, with heterologous protein forming weak band in oligomer form. Homologous ${\beta}-casein$ protein showed high emulsion stability, while homologous glycinin showed almost no stability. Stability of heterologous ${\beta}-casein$ and glycinin protein was higher than that of glycinin. SEM photographs showed even distribution of bio-hybridized proteins on oil droplet improved stability.

Detection and quantitation of Bacillus cereus, Staphylococcus aureus, Salmonella Typhimurium and Escherichia coli O157:H7 by droplet digital PCR (Droplet Digital PCR을 이용한 Bacillus cereus, Staphylococcus aureus, Salmonella Typhimurium과 Escherichia coli O157:H7의 검출 및 정량)

  • Kim, Jin-Hee;Yoon, JinSun;Lee, Da-Young;Kim, Dongho;Oh, Se-Wook
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.454-460
    • /
    • 2016
  • In this study, we investigated the possibility of Droplet digital PCR (ddPCR) for detection of foodborne pathogens. ddPCR combines partitioning of PCR reactions into several thousands or millions of individual droplets in a water-oil emulsion, and counting of positive PCR reaction using flow cytometry. Four species of foodborne pathogens, Bacillus cereus, Staphylococcus aureus, Salmonella Typhimurium and Escherichia coli O157:H7, were used to quantify the target sequence with each of the designed primers and double stranded DNA-binding Evagreen dye. All tested foodborne pathogens showed a detection limit ranging from $100fg/{\mu}L$ to $10ng/{\mu}L$. It was concluded that ddPCR could be used to detect very low concentrations of foodborne pathogens from complex food matrices. For multi-detection of target pathogens, we also tested the samples using multiplex ddPCR and obtained successful results.

Preparation of Al2O3-ZrO2 Composite Powders by the Use of Emulsions: I. Thermodynamic Model of the Emulsion Stability (에멀젼을 이용한 Al2O3-ZrO2 복합분체의 제조 : I. 에멀젼 안정화에 대한 열역학적 모델)

  • 한상훈;백종규;송승룡
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.6
    • /
    • pp.593-601
    • /
    • 1987
  • A thermodynamic model to predict the stability of the water-in-oil type emulsion and the size of the droplets in stable emulsions was developed. Using this model, the effects of various factors government the droplet size in the metal salt solution-kerosene-span 80 system for the preparation of Al2O3-ZrO2 composite powders were investigated. It was shown that the given emulsion systems were thermodynamically unstable in every case but could be kinetically meta stable. When radius ofthe droplet was below nm, the increase in entropy change due to the configurational contribution of small droplets dominated the total free energy change for emulsification. The optimum conditions under which smaller deoplet was obtained were proposed and the validity of the model was proved with diameters of the droplet and composite powders experimentally determined.

  • PDF