• Title/Summary/Keyword: Oil droplet

Search Result 220, Processing Time 0.028 seconds

A Study on the Collecting Efficiency of Oil-mist Filter according to the Sub-filter Shape (서브필터 형상에 따른 Oil-mist Filter의 포집효율 향상에 관한 연구)

  • Kim, Yong Sun;Yun, Seong Min;Shin, Hee Jae;Ko, Sang Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2019
  • Cooking oil in kitchen-fog is the most harmful factor to the health of a cook. The proposed filter is a tool that protects the cooked state, to prevent users from inhaling oil mist in the kitchen. Due to efficiency issues, existing filters are of the mesh type or baffle type. In this paper, CFD analysis is carried out to select a filter with low pressure loss and low efficiency, and to attach the sub-filter to improve efficiency. The results of the analysis on the collection efficiency and pressure loss of three sub-filters, i.e., circle type, droplet type, and cone type, showed that the collection efficiency was 64.09% and the pressure loss was 1.26 mmAq when the circle type sub-filter was applied. The position of the sub-filter showed the best efficiency and pressure loss when it was located at the bottom of the center of the gap of the main filter.

Characteristics of Water Droplets in Gasoline Pipe Flow (가솔린 송유관에서의 수액적 거동 특성)

  • Kim, J.H.;Kim, S.G.;Bae, C.;Sheen, D.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Liquid fossil fuel contaminated by water can cause trouble in the combustion processes and affect the endurance of a combustion system. Using an optical sensor to monitor the water content instantaneously in a fuel pipeline is an effective means of controlling the fuel quality in a combustion system. In two component liquid flows of oil and water, the flow pattern and characteristics of water droplets are changed with various flow conditions. Additionally, the light scattering of the optical sensor measuring the water content is also dependent on the flow patterns and droplet characteristics. Therefore, it is important to investigate the detailed behavior of water droplets in the pipeline of the fuel transportation system. In this study, the flow patterns and characteristics of water droplets in the turbulent pipe flow of two component liquids of gasoline and water were investigated using optical measurements. The dispersion of water droplets in the gasoline flow was visualized, and the size and velocity distributions of water droplets were simultaneously measured by the phase Doppler technique. The Reynolds number of the gasoline pipe flow varied in the range of $4{\times}10^{4}\;to\;1{\times}10^{3}$, and the water content varied in the range of 50 ppm to 300 ppm. The water droplets were spherical and dispersed homogeneously in all variables of this experiment. The velocity of water droplets was not dependent on the droplet size and the mean velocity of droplets was equal to that of the gasoline flow. The mean diameter of water droplets decreased and the number density increased with the Reynolds number of the gasoline flow.

  • PDF

Ostwald Ripening Stability of Curcumin-Loaded MCT Nanoemulsion: Influence of Various Emulsifiers

  • Kim, Sun-Hyung;Ji, Yeun-Sun;Lee, Eui-Seok;Hong, Soon-Taek
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.3
    • /
    • pp.289-295
    • /
    • 2016
  • Curcumin is a flavonoid found in the rhizome of the turmeric plant (Curcuma longa L.) and has recently attracted interest because it has numerous biological functions and therapeutic properties. In the present study, we attempted to incorporate curcumin into medium-chain triglyceride (MCT) nanoemulsions (0.15 wt% curcumin, 10 wt% MCT oil, and 10 wt% emulsifiers) with various emulsifiers [polyoxyethylene (20) sorbitan monolaurate (Tween-20), sorbitan monooleate (SM), and soy lecithin (SL)]. The physicochemical properties of the nanoemulsions including the Ostwald ripening stability were investigated. The initial droplet size was found to be 89.08 nm for the nanoemulsion with 10 wt% Tween-20 (control), and when Tween-20 was partially replaced with SM and SL, the size decreased: 73.43 nm with 4 wt% SM+6 wt% Tween-20 and 67.68 nm with 4 wt% SL+6 wt% Tween-20 (prepared at 15,000 psi). When the nanoemulsions were stored for 28 days at room temperature, the droplet size increased as the storage time increased. The largest increase was observed for the control nanoemulsion, followed by the 4 wt% SL+6 wt% Tween-20 and 4 wt% SM+6 wt% Tween-20 systems. The Turbiscan dispersion stability results strongly supported the relationship between droplet size and storage time. The time-dependent increase in droplet size was attributed to the Ostwald ripening phenomenon. Thus, the Ostwald ripening stability of curcumin-loaded MCT nanoemulsions with Tween-20 was considerably improved by partially replacing the Tween-20 with SM or SL. In addition, curcumin may have acted as an Ostwald ripening inhibitor.

Nanoemulsions: a Novel Vehicle for Cosmetics (나노에멀젼: 화장품을 위한 새로운 제형)

  • Cho, Wan-Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-21
    • /
    • 2011
  • This review describes several kinds of emulsification methods for nanoemulsions and the application of nanoemulsions. Nanoemulsion droplet sizes fall typically in the range of 20 ~200 nm and show narrow size distributions. Although most of the publications on either oil-in-water (O/W) or water-in-oil (W/O) nanoemulsions have reported their formation by dispersion or high-energy emulsification methods, an increased interest is observed in the study of nano-emulsion formation by condensation or low-energy emulsification methods based on the phase transitions that take place during the emulsification process. Phase behaviour studies have shown that the size of the droplets is governed by the surfactant phase structure (bicontinuous microemulsion or lamellar) at the inversion point induced by either temperature or composition. Studies on nanoemulsion formation by the phase inversion temperature (PIT) method have shown a relation between minimum droplet size and complete solubilization of the oil in a microemulsion bicontinuous phase independently of whether the initial phase equilibrium is single or multiphase. Due to their small droplet size nanoemulsions possess stability against sedimentation or creaming with Ostwald ripening forming the main mechanism of nanoemulsion breakdown. An application of nanoemulsions is the preparation of nanoparticles using a polymerizable monomer as the disperse phase where nanoemulsion droplets act as nanoreactors, cosmetics and controlled drug delivery. In this review, we mainly focus on the cosmetics.

Behaviour of Nanoemulsions Containing Ceramide IIIB and Stratum Corneum Lipids (세라마이드 IIIB와 각질층 지질을 함유한 나노에멀젼의 거동)

  • Cho, Wan Goo;Kim, Kyung Ah;Jang, Seon Il;Cho, Byoung Ok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • Oil/water (O/W) nanoemulsions are effective vehicles to change the permeability of the skin. In this study, we focused on the preparation and characterization of nanoemulsion which serve as colloidal carriers for the dermal application of ceramide IIIB (CIIIB) and stratum corneum (SC) lipids such as cholesterol, and palmitic acid. In order to optimize the nanoemulsions, emulsification process conditions were conducted with regard to droplet size, nanoemulsion stability, and solubility of CIIIB. A decrease in droplet size was observed through emulsification temperature of $80^{\circ}C$ and phase inversion composition (PIC) method. CIIIB has low solubility in oil and water. When the concentration of CIIIB was increased, the droplet size of nanoemulsion was increased. When Lipoid S75-3 was added to the oil phase, the solubility of CIIIB increased, indicating some interactions shown in DSC measurements. CIIIB and SC lipids could be successfully incorporated in nanoemulsions without crystallization or physical instability. In conclusion, a stable nanoemulsion containing the SC lipids could be effective as an efficient moisturizing system for skin.

An Evaluation on the Combustion Characteristics of Heavy Oil-Water Emulsions (중질유-물 유화연료의 연소특성 평가)

  • Lee, Yong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1722-1728
    • /
    • 2002
  • Most researches regarding emulsified fuel were in the areas of emulsifier, emulsified fuel manufacturing and emulsified fuel droplet combustion, but there were little papers published regarding emulsified fuel combustion and boiler efficiency in an industrial boiler. The main purpose of this study is to clarify whether improvements in the boiler efficiency and the reduction of pollutants such as CO, NOx, SOx and smoke exist or not when emulsified fuels are combusted in the commercial boiler. Main experimental parameters were water content in heavy oil , excess $O_2$, and boiler load. The fuels used in this experiment were 0.5 B-C, and 5 kinds of 0.5 B-C/water emulsified fuels. The combustion characteristics of heavy oil and its emulsions with water were investigated in an industrial boiler. The combustion stability was monitored and exhaust gases such as CO, NOx, SOx and smoke were measured with excess $O_2$ and combustion load. In case of emulsified fuel combustion, flame stability was poor and boiler efficiency was lowered by 1.6~5.7%, but emission levels of CO and smoke were improved.

Fabrication and Filtering Test of Nanoparticle-Stabilized Emulsion to be Suitable for Enhanced Oil Recovery (석유증진회수에 적합한 나노 에멀젼의 제조 및 필터링 시험 분석)

  • Son, Han Am;Lee, Keun Ju;Cho, Jang Woo;Im, Kyung Chul;Kim, Jin Woong;Kim, Hyun Tae
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.51-61
    • /
    • 2013
  • Researches on the oil recovery enhancement using the nanotechnology has recently been studied in the United States. The previous researches has focused mainly on the flow characteristics of nanoparticles in porous media, and the stability of the nano-emulsion itself. However, the analysis did not deal with the size effects between a nano-emulsion and the pore size which has an important role when nano-emulsion flows in the porous media. In this research, nano-based emulsion was fabricated which is able to be applied for the enhanced oil recovery techniques and its characteristics was analyzed. In addition, in order to identify the characteristics of nano-emulsions flowing through the porous media, the size effect was analysed by filtering test. According to the results, when the emulsion was fabricated, SCA(Silane Coupling Agent) or PVA(Poly Vinyl Alcohol) are added to improve the stability of emulsion. As the ratio of the decane to water increased, the viscosity of emulsion and the droplet size also increased. For the filtering test at the atmospheric conditions, the droplet did not go through the filter; only the separated water from the emulsion was able to be filtered. This phenomenon occurred because the droplet was not able to overcome the capillary pressure. At the filtering test by suction pressure, most of the emulsion was filtered over the filter size of $60{\mu}m$. However, the ratio of filtration was rapidly degraded at less than $45{\mu}m$ filters. This is caused due to deformation and destruction of the droplet by strong shear stress when passing through the pore. The results from the study on the basic characteristic of nano-emulsion and filtering test will be expected to play as the important role for the fabrication of the stable nano-emulsion or the research on the recovery of residual oil in porous media.

Emulsification of O/W Emulsion Using Non-ionic Mixed Surfactant: Optimization Using CCD-RSM (비이온성 혼합계면활성제를 이용한 O/W 유화액의 제조 : CCD-RSM을 이용한 최적화)

  • Lee, Seung Bum;Li, Guangzong;Zuo, Chengliang;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.606-614
    • /
    • 2019
  • A mixing ratio of the oil in water (O/W) emulsion of palm oil and the non-ionic surfactant (Tween-Span type) possessing different hydrophile-lipophilie balance (HLB) values was evaluated in this work. An optimum condition was determined through analysis of main and interaction effects of each quantitative factor using central composite design model-response surface methodology (CCD-RSM). Quantitative factors used by CCD-RSM were an emulsification time, emulsification speed, HLB value and amount of surfactant. On the other hand, the reaction parameters were the viscosity and mean droplet size of O/W emersion. Optimized conditions obtained from CCD-RSM were the emulsification time of 12.7 min, emulsification speed of 5,551 rpm, HLB value of 8.0 and amount of surfactant of 5.7 wt.%. Ideal experimental results under the optimized experimental condition were the viscosity of 1,551 cP and mean droplet size of 432 nm which satisfy the targeted values. The average error value from our actual experiment for verifying the conclusions was below to 2.5%. Therefore, a high favorable level could be obtained when the CCD-RSM was applied to the optimized palm oil to water emulsification.

Comparison between heavy oil combustion test and numerical analysis of combustion phenomena subject to changes in injection characteristics (분무특성에 따른 중유연소 수치해석의 결과와 실험과의 비교)

  • Lee, S.S.;Kim, H.J;Kim, J.J.;Choi, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.338-343
    • /
    • 2003
  • Computations were performed to investigate the spray characteristics of the twin fluid nozzle in three stage heavy-oil combustion burner. The burner geometry and flow conditions were provided by a burner company. The goal of the study is to estimate mean droplet size, initial velocity and spread factor of the nozzle through comparison between experiments and numerical analyses. Air stage ratio is 2:4:4 by mass, and O2 in exhaust gas is about 4 % by volume. Here, the agreement between the experiment and numerical analyses is evaluated by NOx generation. Spray characteristics will be linearly interpolated between fuel consumption rate l20L/h and 240 L/h.

  • PDF

Atomization Characteristics of Effervescent Atomizer with the Variations of Operating Conditions (작동조건 변화에 따른 기체주입미립화기의 미립화 특성)

  • Kim, Hyung-Gon;Yano, Toshiaki;Song, Kyu-Keun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.869-874
    • /
    • 2003
  • The atomization characteristics were investigated through the influence of the change of GLR and the change of working fluid on droplet size distribution and mean diameter of drop produced by effervescent atomizer. For simultaneous injection of water and high viscous waste vegetable oil, effervescent atomizer with two aerator tubes was specially designed. From the experimental results, regardless of mass fraction of vegetable oil in working fluids, it is expected that effervescent atomizer will exhibit excellent atomization performance at the high GLR conditions.

  • PDF