• Title/Summary/Keyword: Oil and Gas Industry

Search Result 205, Processing Time 0.03 seconds

Study on Manufacture of High Purity TiCl4 and Synthesis of High Purity Ti Powders (고순도 TiCl4 제조 및 이를 활용한 고순도 Ti 분말 제조 공정 연구)

  • Lee, Jieun;Yoon, Jin-Ho;Lee, Chan Gi
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.282-289
    • /
    • 2019
  • Ti has received considerable attention for aerospace, vehicle, and semiconductor industry applications because of its acid-resistant nature, low density, and high mechanical strength. A common precursor used for preparing Ti materials is $TiCl_4$. To prepare high-purity $TiCl_4$, a process based on the removal of $VOCl_3$ has been widely applied. However, $VOCl_3$ removal by distillation and condensation is difficult because of the similar physical properties of $TiCl_4$ and $VOCl_3$. To circumvent this problem, in this study, we have developed a process for $VOCl_3$ removal using Cu powder and mineral oil as purifying agents. The effects of reaction time and temperature, and ratio of purifying agents on the $VOCl_3$ removal efficiency are investigated by chemical and structural measurements. Clear $TiCl_4$ is obtained after the removal of $VOCl_3$. Notably, complete removal of $VOCl_3$ is achieved with 2.0 wt% of mineral oil. Moreover, the refined $TiCl_4$ is used as a precursor for the synthesis of Ti powder. Ti powder is fabricated by a thermal reduction process at $1,100^{\circ}C$ using an $H_2-Ar$ gas mixture. The average size of the Ti powder particles is in the range of $1-3{\mu}m$.

Natural frequency of bottom-fixed offshore wind turbines considering pile-soil-interaction with material uncertainties and scouring depth

  • Yi, Jin-Hak;Kim, Sun-Bin;Yoon, Gil-Lim;Andersen, Lars Vabbersgaard
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.625-639
    • /
    • 2015
  • Monopiles have been most widely used for supporting offshore wind turbines (OWTs) in shallow water areas. However, multi-member lattice-type structures such as jackets and tripods are also considered good alternatives to monopile foundations for relatively deep water areas with depth ranging from 25-50 m owing to their technical and economic feasibility. Moreover, jacket structures have been popular in the oil and gas industry for a long time. However, several unsolved technical issues still persist in the utilization of multi-member lattice-type supporting structures for OWTs; these problems include pile-soil-interaction (PSI) effects, realization of dynamically stable designs to avoid resonances, and quick and safe installation in remote areas. In this study, the effects of PSI on the dynamic properties of bottom-fixed OWTs, including monopile-, tripod- and jacket-supported OWTs, were investigated intensively. The tower and substructure were modeled using conventional beam elements with added mass, and pile foundations were modeled with beam and nonlinear spring elements. The effects of PSI on the dynamic properties of the structure were evaluated using Monte Carlo simulation considering the load amplitude, scouring depth, and the uncertainties in soil properties.

Study on Performance of Radiant Heat Shields for Offshore Installations (해양플랜트 복사열 차폐막의 차폐성능에 관한 연구)

  • Kim, Bong Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.330-339
    • /
    • 2019
  • Radiant heat shields are normally installed on offshore oil and gas platforms to protect personnel, equipment, and structures from the thermal radiation emitted by a flare system. A heat shield should be individually designed to reduce the thermal radiation to the target level, and then manufactured and installed after the performance verification. However, in general, a heat shield is designed and manufactured by trial and error based on the performance test. For this reason, it is difficult to develop and design radiant heat shields in the Korean shipbuilding and marine equipment industry because of the lack of performance test data and limited experience. In the present study, the results of experiments conducted to verify the performances of radiant heat shields were analyzed, and the thermal radiation characteristics and performance characteristics of the radiant heat shields were investigated. The insights and conclusions developed in the present study will be useful in terms of the design and development of radiant heat shield, as well as in their performance verification tests.

Strategic Planning and Firm Performance: The Mediating Role of Strategic Maneuverability

  • KORNELIUS, Hermas;SUPRATIKNO, Hendrawan;BERNARTO, Innocentius;WIDJAJA, Anton Wachidin
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.479-486
    • /
    • 2021
  • This study aims to explore the relationships between strategic planning, strategic maneuverability, and firm performance in the current dynamic business environment. It employs a quantitative research method and reports on a survey, using a questionnaire, of service companies in Indonesia's oil and gas industry. Of the 337 companies selected by simple random sampling from a vendor database, responses were received from 70 companies. The analysis was performed using Partial Least Square Structural Equation Modeling and SmartPLS software. The analysis consisted of descriptive statistics, evaluation of the measurement model, evaluation of the structural model, and hypotheses testing. The results show that both strategic planning and strategic maneuverability have a positive relationship with firm performance. In addition, there is a positive relationship between strategic planning and firm performance through the mediating role of strategic maneuverability. The findings suggest that the organizational agility, organizational flexibility, and organizational responsiveness that constitute strategic maneuverability have a positive direct and indirect effect on firm performance, namely financial performance, customer performance, internal process performance, and learning and growth. This study contributes to the strategic management literature and the theory of maneuvers by providing empirical evidence on the relationship between strategic planning, strategic maneuverability, and firm performance.

An Analysis on Inter-Regional Price Linkage of Petroleum Products (석유제품 가격의 지역 간 연계성 분석)

  • Song, Hyojun;Lee, Hahn Shik
    • Environmental and Resource Economics Review
    • /
    • v.28 no.1
    • /
    • pp.121-145
    • /
    • 2019
  • This paper investigates the relationship between the oil price and the major petroleum products prices at the trading hubs such as Singapore, North West Europe and the US New York Harbor. We focus on the lead-lag relationship between the weekly petroleum prices from 2009 to 2016 based on the vector error correction model. We find that the oil price leads the prices of petroleum products in the long term, while there is bidirectional causality in the short term. On the other hand, prices of petroleum products in regions with high import dependency, such as Europe gas oil and jet fuel price, are exogenous in the long term. We also present evidence that prices of petroleum products in region with a large global-market share lead prices in other regions. However, if the region is in an over-production situation and low industry concentration, it may lose its price leadership due to intense competition. The result in this study can provide a useful information to petroleum refining companies in forecasting fluctuations of product price, and hence in planning their regional arbitrage trading activities.

A review of chloride induced stress corrosion cracking characterization in austenitic stainless steels using acoustic emission technique

  • Suresh Nuthalapati;K.E. Kee;Srinivasa Rao Pedapati;Khairulazhar Jumbri
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.688-706
    • /
    • 2024
  • Austenitic stainless steels (ASS) are extensively employed in various sectors such as nuclear, power, petrochemical, oil and gas because of their excellent structural strength and resistance to corrosion. SS304 and SS316 are the predominant choices for piping, pressure vessels, heat exchangers, nuclear reactor core components and support structures, but they are susceptible to stress corrosion cracking (SCC) in chloride-rich environments. Over the course of several decades, extensive research efforts have been directed towards evaluating SCC using diverse methodologies and models, albeit some uncertainties persist regarding the precise progression of cracks. This review paper focuses on the application of Acoustic Emission Technique (AET) for assessing SCC damage mechanism by monitoring the dynamic acoustic emissions or inelastic stress waves generated during the initiation and propagation of cracks. AET serves as a valuable non-destructive technique (NDT) for in-service evaluation of the structural integrity within operational conditions and early detection of critical flaws. By leveraging the time domain and time-frequency domain techniques, various Acoustic Emission (AE) parameters can be characterized and correlated with the multi-stage crack damage phenomena. Further theories of the SCC mechanisms are elucidated, with a focus on both the dissolution-based and cleavage-based damage models. Through the comprehensive insights provided here, this review stands to contribute to an enhanced understanding of SCC damage in stainless steels and the potential AET application in nuclear industry.

Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment

  • Xu, Chen;Jing-Lei, Zhao;Gui-Lin, She;Yan, Jing;Hua-Yan, Pu;Jun, Luo
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.641-652
    • /
    • 2022
  • Fluid-conveying tubes are widely used to transport oil and natural gas in industries. As an advanced composite material, functionally graded carbon nanotube-reinforced composites (FG-CNTRC) have great potential to empower the industry. However, nonlinear free vibration of the FG-CNTRC fluid-conveying pipe has not been attempted in thermal environment. In this paper, the nonlinear free vibration characteristic of functionally graded nanocomposite fluid-conveying pipe reinforced by single-walled carbon nanotubes (SWNTs) in thermal environment is investigated. The SWCNTs gradient distributed in the thickness direction of the pipe forms different reinforcement patterns. The material properties of the FG-CNTRC are estimated by rule of mixture. A higher-order shear deformation theory and Hamilton's variational principle are employed to derive the motion equations incorporating the thermal and fluid effects. A two-step perturbation method is implemented to obtain the closed-form asymptotic solutions for these nonlinear partial differential equations. The nonlinear frequencies under several reinforcement patterns are presented and discussed. We conduct a series of studies aimed at revealing the effects of the flow velocity, the environment temperature, the inner-outer diameter ratio, and the carbon nanotube volume fraction on the nature frequency.

Predictive maintenance technology for smart factory (스마트 팩토리를 위한 예지보전 기술)

  • Kwon, Dae-hoon;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.172-174
    • /
    • 2021
  • In the existing industry, maintenance was carried out in the form of preventive maintenance such as occurrence of unnecessary idle time due to limited monitoring and maintenance. However, with the advent of the Fourth Industrial Revolution, real-time monitoring is possible in many industries including mining, manufacturing, oil and gas, and commercial agriculture, and it is desired to minimize idle time due to maintenance. In particular, there is a growing interest in predictive maintenance that can reduce costs and maximize operational efficiency by predicting and maintaining a failure before equipment and equipment fail. In this study, we look at the predictive maintenance technology that can verify the abnormal condition of the equipment of the smart factory in advance and monitor the abnormal condition in real time.

  • PDF

Reinforcement of mechanical properties in unsaturated polyester resin with nanosheet

  • Vahid Zarei
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.81-90
    • /
    • 2024
  • In the oil and gas industry, composite materials should exhibit high flexibility and strength for offshore structures. Therefore, weak points in the composites should be improved, such as brittleness, moisture penetration, and diffusion of detrimental ions into nanometric pores. This study aimed to increase the strength, flexibility, and plugging of nanopores using single-layer graphene oxide (SGO) nanosheets. Therefore, SGO is added to unsaturated polyester resin at concentrations of 0.015 and 0.15 % with Normal Methyl Pyrrolidone (NMP) as a solvent for the formation of Nanographene Oxide Reinforced Polymer (NGORP). The mechanical properties of the prepared samples were tested using tensile testing (ASTM-D 638). It has been shown that incorporating SGO, approximately 0.015%, into the base resin resulted in enhanced properties such as rupture resistance forces increased by 745.61 N, applied stress tolerances increased by 4.1 MPa, longitude increased to 1.58 mm, elongation increased by about 2.38%, and rupture energy increased by about 204.51 J. Despite the decrease in tensile force strength properties in the manufactured nanocomposite with 0.15% SGO, it has exclusive flexibility properties such as a high required energy level for rupture of 5,576 times and a formability of 40% more than the base sample. It would be best to use NGORP manufactured from 0.015% nanosheets with exclusive properties rather than base samples for constructing parts and equipment, such as rebars, composite sheets, and transmission pipes, on offshore platforms.

Static performance analysis of deepwater compliant vertical access risers

  • Lou, Min;Li, Run;Wu, Wugang;Chen, Zhengshou
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.970-979
    • /
    • 2019
  • Compliant Vertical Access Risers (CVARs) are compliant systems that incorporate a differentiated geometric configuration that allows the exploitation of oil and gas in deepwater fields and enables a number of operational advantages in the offshore system. One of the main features of CVAR systems is that they allow direct intervention procedures to be applied to the well bore, enabling workover operations to be performed directly from the production platform. Based on the principles of virtual work and variation, a static geometric nonlinear equation of CVARs is derived and applied in this study. The results of this study show that the two ends of the riser as well as the transition region are subject to high stress, while the positions of the floating platform exert significant effects on the geometry of the riser configuration. Compliance and buoyancy factors should be set moderately to reduce the CVAR stress. In addition, the buoyancy modules should be placed in the lower region, in order to maximize the operation advantages of CVAR.