• Title/Summary/Keyword: Oil Pump

Search Result 378, Processing Time 0.026 seconds

A Study on a Novel Flow Control Valve for Wind Power Heat Generation Hydraulic Systems (풍력 열발생 유압 시스템을 위한 새로운 유량제어밸브에 관한 연구)

  • Choi, Sae Ryung;Lee, Ill Yeong;Han, Bong Jun
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • A wind power heat generation system that converts wind power directly to heat instead of electric power is considered in this study. The system consists of a wind turbine part and a heat generation part. The heat generation part is materialized by a hydraulic system including a hydraulic pump, a flow control valve, a hydraulic oil tank, etc. The flow control valve primarily converts hydraulic energy generated in the pump to heat energy. It should have a function of overspeed protection under excessive wind speeds. In this study, a novel flow control valve design is proposed for excellent flow control characteristics under excessive pump driving torque (excessive wind speed). The performance of the suggested valve is analyzed using numerical simulation.

The Lubrication Mode Between the Vane Tip and Camring in an Oil Hydraulic Vane Pump with Intravanes. (인트라 베인식 油壓 베인펌프의 베인 先端部 潤滑모드)

  • Jung, Jae-Youn;Kyogoku, Keiji;N
    • Tribology and Lubricants
    • /
    • v.6 no.1
    • /
    • pp.52-56
    • /
    • 1990
  • The Lubrication Mode of line contacts between the vane and camring in an oil hydraulic vane pump with intravanes has been investigated. Variations of the radial acting force of a vane were calculated from previously measured results of dynamic internal pressure in four chambers surrounding a vane, and variations of the lubrication mode were estimated in both the rotational speed range from 500 to 1500 rpm and in the delivery pressure range from 1 to14 Mpa. The results indicate the variations of the radial acting force. It is found that the regimes of lubrication in the vane tip contacts cover rigid-isoviscous to rigid-variable viscosities.

An Experimental Study on the Friction Characteristics of Oil Hydraulic Vane Pump

  • Cho, Ihn-Sung;Dong, Myeong-Seon;Jung, Jae-Youn
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.385-386
    • /
    • 2002
  • The friction characteristics of contact region between vane tip and cam-ring is studied with an experimental device model. The radius of vane tip is less than 1 mm and sliding speed is lower than 10 m/s. The friction characteristics of the actual oil hydraulic vane pump is estimated on the basis of coefficient of friction. The coefficient of friction can be obtained by measuring the frictional forces in the contact region. The lubrication condition between vane and disk is modeled after the actual condition between the vane and cam-ring.

  • PDF

A Study on the Development of the Automatic Performance­Test­machine for Power Steering Pump (파워스티어링 펌프의 자동 성능 시험기 개발에 관한 연구)

  • 정재연;정석훈
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.335-341
    • /
    • 2003
  • Recently, the automotive industry is being developed rapidly. On this, a demand of high quality performance­test­machine is increased too. But it is progressive technology that must be combined hydraulic, mechanic and electronic technologies. To construct this system, the design of oil hydraulic circuit, interface skill between sensor and personal computer, data acquisition & display system and integrated control are very important skill. Moreover, reliable data is obtained with vacuum system and complex heat exchange system. Therefore, in this study, we designed a performance­test­machine by using above key technologies and we also made a integrated PC control system using personal computer which is more progressive and flexible method than PLC control.

The Dynamic Behavior of Internal Rotating Slider of Oil Hydraulic Vane Pump (유압베인펌르 내부 회전체의 역학적인 거동)

  • 김장현;정재윤
    • Tribology and Lubricants
    • /
    • v.6 no.2
    • /
    • pp.43-49
    • /
    • 1990
  • The Dynamic Behavior in line contacts between the vane tip and camring in an oil hydraulic vane pump with intravanes has been investigated. Variations of the radial acting force of a vane were calculated from previously measured results of dynamic infernal pressure in four chambers surrounding a vane, and variations of the behavior were estimated in both the rotational speed range from 1200 to 2700 rpm and in the delivery pressure range from 10 to 21Mpa. The results indicate the variations of the radial acting force. Under the standard operating condition (to 14 Mpa, 1800 rpm), the radial acting force on the vane is governed by internal dynamic pressures, but it is more influenced by rotating speed at higher than 2000 rpm relatively.

A Fabrication and Experiment of Induction-type EHD Micropump with Temperature Gradient (온도차를 이용한 유도형 마이크로 EHD 펌프의 제작 및 실험)

  • Youn, Yong-Kyu;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.198-200
    • /
    • 1993
  • This paper represents the experimental results of electrohrdrodynamic(EHD) micropump driven by traveling- wave voltage. We fabricated 60 electrodes array with $100{\mu}m$ width and $100{\mu}m$ interval on the pyrex glass. On that glass we fabricated the micro channel which had the cross section of 3mm by 0.5mm. This pump was driven by 6 phase square traveling-wave voltage. We used the corn oil for experiments and increased the temperature of fluid by resistive heater. An optical microscope with CCD camera and monitor was used for observation. The fluid velocity was large for the large driving voltage and the high temperature. This EHD pump had the fluid velocity in specific frequency (near 1Hz) which had relation to the charge relaxation time in that oil.

  • PDF

Extinguishing of Oil Fire by Water Mist Suppression System Using Compressed Inert Gas (불활성 압축가스를 이용한 미세물분무 소화시스템의 유류화재 소화특성)

  • Shin, Chang-Sub;Jeon, Go-Un;Kim, Ki-Whan
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.109-114
    • /
    • 2010
  • Water mist fire suppression system is environmental system and needs a flange pump to jet water. In this research, high pressure Nitrogen cylinder is used as a pressurizing source instead of flange pump, and also we tried to find the possibility of using compressed Nitrogen as a fire suppression agent. As a result, it was possible to design water mist fire suppression system with Nitrogen cylinder and suppress oil fire effectively. With DK1.58 nozzle, the optimum Nitrogen pressure was 80bar and the pressure was stable during water mist spray. However, jet of Nitrogen was not effective fire suppression agent when it was dually used with water mist because water mist has blown away, and it is efficient way to use compressed Nitrogen as a pressurizing source only.

A Simple Thermal Model of Fuel Thermal Management System in Aircraft Engine

  • Youngjin Kim;Jeonghwan Jeon;Gonghoe Gimm
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.11-18
    • /
    • 2023
  • The architecture of the Fuel Thermal Management System (FTMS) in a commercial aircraft engine was built to model and simulate the fuel system. The study shows the thermal interactions between the fuel and engine lubrication oil through the mission profile of a high bypass ratio, two-spool turbofan engine. Fuel temperature was monitored as it flowed through each sub-component of the fuel system during the mission. The heat load in the fuel system strongly depended on the fuel flow rate, and was significantly increased for the periods of cruise and descent with decrease of fuel flow rate, rather than for the periods of take-off. Due to the thermal interaction in the pump housing, the fuel temperature at the outlet of the low-pressure pump was increased (4.0, 9.2, and 30.0) % over the case without thermal interaction for take-off, cruise, and descent, respectively.

Design Tool Developments of the Gerotor tooth using Matlab GUI (Matlab GUI를 활용한 Gerotor 치형 설계 도구 개발)

  • Jang, J.S.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.25-32
    • /
    • 2010
  • A geortor type pump is widely used in lubrication and actuator systems. Especially the pump is an essential machine element of an automotive engine to feed lubrication oil and power source of automatic transmission. A gerotor is a planar mechanism consist of a pair of rotor and circular tooth of stator assembly which forms a closed space. However, related industries do not have necessary technology to design and optimize the pump and paid royalties of gerotor profile on an advanced company. Also, gerotor profiles with setting design parameter have not been sufficiently analyzed from a theoretical view. Therefore, it is very difficult for designer to decide the specifications of the gerotor profiles, and calculation and fluctuation of flow rate is not yet confirmed. In this study, theoretical analyses and optimal design of the gerotor profiles have been performed numerical method by mathematical base. An automated design system of the tooth profile has been developed through MATLAB GUI Program considering various design parameters.

  • PDF

Study on Improvement of Performance by Optimizing Impeller Shape of a Coolant Pump (쿨런트 펌프 임펠러 형상 최적화를 통한 성능개선에 관한 연구)

  • Gil, Min Hyeong;Lee, Gun-Myung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.48-52
    • /
    • 2019
  • A coolant pump is the device that cools processed articles and tools when using cutting, boring, and grinding machine tools and provides cutting oil for distributing or cleansing the cut chip to the worktable, processing position, etc. In particular, it consumes a large proportion of energy in machine tools, so it plays an important role in terms of energy efficiency. The purpose of this research is to optimize the shape of impeller, which directly affects performance improvements, to determine the capacity of the coolant pump. To do so, we carried out a parametric analysis with the geometric shape of the impeller as the input variable.