• Title/Summary/Keyword: Oil Flow

Search Result 1,067, Processing Time 0.027 seconds

Assisted Flow Rate Characteristics in Hydraulic Power Steering System (유압식 파워 스티어링 시스템의 어시스트 유량 특성)

  • Lee, Byung-Rim;Ryu, Sang-Woock;You, Chung-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.58-63
    • /
    • 2009
  • Flow rate of the power steering oil pump is affected by oil temperature, engine rpm and pressure of pump. In this paper, considering those conditions, approximate model expressed by flow rate characteristics between hydraulic power steering oil pump and steering gear is proposed. Oil pump displacement is considered to be 9.6cc/rev. which is adapted to mid size car. Flow rate of the oil pump is predicted from the proposed model and compared with experimental data. And catch-up is also predicted in each steering wheel speed and is compared with experimental results.

Micro-PIV Measurement of Water/Oil Two Phase Flow in a Y-Junction Microchannel (Y형 마이크로채널에서의 물/기름 2상 유동에 대한 Micro-PIV 측정)

  • Yoon,Sang-Youl;Ko, Choon-Sik;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.682-687
    • /
    • 2004
  • Y-junction microchannels are widely used as a flew mixer. Fluids are entered from two branch channels and merged together at a combined channel. In this study, we suggest a simple method to create the fluid digitization using flow instability phenomena. Two immiscible liquids (water/oil) are infused continuously to each Y-junction inlets. Because of the differences in fluid and flow properties at the interface, oil droplet is formed automatically followed by flow instability. In order to clarify the hydrodynamic aspects involved in oil droplet formation, a quantitative flow visualization study has performed. Highly resolved velocity vector fields are obtained by a micro-PIV technique, so that detail flow structures around the droplet are illustrated. In this study, fluorescent particles were mixed with water only for visualization of oil droplet and velocity field measurement in water flow.

A Study on the Flow Characteristic for Changing of Flow Region of the Motor Inserted Oil Pump (내부 유로 변경에 따른 전동기 일체형 유압펌프 내부의 유동특성에 관한 연구)

  • Choi, Y.H.;Lee, T.K.;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.26-31
    • /
    • 2012
  • A numerical study has been carried out to investigate the heat and mass transfer of an oil pumping system with a variable shape of the housing using the CFD method. Especially, the electric motor and the pump combined together, accomplishes a research about the oil supplying system. In this study, the temperature and velocity distribution of the oil pumping system by varying the flow rate of supplying oil have been investigated. The temperature changes with each five conditions(flow rate of supply oil : 2, 4, 8, 12, and 16 liter/min) have also been studied. The numerical results show that the exhaust temperature decreases as the flow rate of the supplying oil increases. It also reveals that the temperatures change differently with the housing shape.

Research of Flow Velocity and BTA According to the Streaming Electrification of Vegetable Insulating Oils (식물성 절연유의 유속과 BTA에 따른 유동대전 현상 연구)

  • Choi, Sun-Ho;Bang, Jeong-Ju;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.791-797
    • /
    • 2012
  • Mineral insulating oils are an important insulating materials in oil-filled transformer. However, the mineral oil is the cause of the environmental problem. The vegetable oils are substitutes for mineral oil because of its biodegradability characteristic. As large size and high rating of the transformer increases, the losses increase at a faster rate. So insulating oil is forced circulation in the oil-filled transformer by using oil pumps. The flow electrification occurs when insulating oil was forced to be circulated. To check the flow electrification, had conducted experiments varying factors. As a result, the streaming electrification could see the changes according to flow velocity, oil temperature and insulation materials.

Flow Analysis of the Tube Type Marine Auto-Backwashing Fuel Oil Filter (튜브형 박용 자동역세 연료유 필터 내부의 유동해석)

  • Yang, Jang-Sik;Kim, Bong-Hwan;Park, Young-Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.578-587
    • /
    • 2009
  • In this paper, the characteristics of incompressible flow in a tube type marine fuel oil filter have been investigated. Fluent program has been used to obtain the solutions for the problems of three-dimensional, turbulent fuel oil flow in a filtering system. The inlet flow field is assumed to be uniform. The velocity and pressure distributions were obtained using Darcy's law. The increase of inlet velocity for cleaning fuel oil may cause some problems like vibration of the filter element. It was also required to consider the distribution of cleaning velocity because the worst distribution of cleaning velocity may cause the local insufficient cleaning effect and furthermore the effective filtration area can be reduced. The simulated results show that the computer code can be successfully applied for simulation of the complex base oil flow through the porous media. This paper could be applied to the design of auto-backwashing filtering system as design factor.

A Study on the Flow Characteristic of Lubrication Oil System in Manual Transmission System for Large Commercial Vehicle (대형 상용차용 수동변속기내 윤활시스템의 유동특성에 관한 연구)

  • Yi, Chung-Seob;Suh, Jeong-Se;Song, Chul-Ki;Shin, Yoo-In;Yun, Ji-Hun;Chung, Kyung-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.77-82
    • /
    • 2010
  • This study has conducted numerical analysis for lubrication system of transmission for commercial vehicle. The lubrication oil system in transmission can be applied to a large scale commercial vehicle which is over 15tons. The flow rate of lubricating oil has been obtained for each of branch port from the lubrication pipe. The results from numerical simulation are mainly suggested for the mass flow rate of lubrication oil in the rotating main shaft of transmission system. It has been found that the mass flow rate from oil hole increased with an rotating rate of main shaft. The flow characteristic from oil hole has been presented for the lubricating system in the manual transmission.

Prediction of Oil Lifetime due to Overheating of Oil and Bearing Housing in a Pump (펌프 베어링하우징에서 베어링과 오일의 과열 및 오일수명 예측)

  • 한상규;강병하;이봉주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.408-413
    • /
    • 2004
  • An experimental study has been carried out to investigate overheating of oil and bearing housing during pump operation. This problem is of particular interest in the pre diction of lifetime and failure of pump. Transient variation of oil temperature as well as bearing housing temperature is measured to study the effect of oil viscosity, oil amount, and discharge flow rate of pump. It is found that optimal oil quantity as well as proper viscosity of oil is required to keep the safe temperature level of oil and bearing housing in a pump. The oil temperature at steady state is almost not affected by discharge flow rate in the range of discharge flow rates considered in the present study.

Micro-PIV Measurement on the droplet formation in a microfluidic channel (미세유체소자 내부에서의 Droplet 형성에 대한 Micro-PIV 측정)

  • Yoon, Sang-Youl;Ko, Choon-Sik;Kim, Jae-Min;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1534-1539
    • /
    • 2004
  • This experiment has been carried out to measure the process of droplet formation between water phase fluid(PVA 3%) and organic phase fluid(oil) and vector fields measured by a Dynamic Micro-PIV method in the inside of a droplet while generated. Droplet length controlled by changing flow rate conditions in microchannel. Water-in-oil(W/O) droplets successfully generated at a Y junction and cross microchannel. But oil-in-water(O/W) droplets could not be formed at a Y junction microchannel. That is, PVA 3% flow could not be detached from the PDMS surface and ran parallel with oil flow. When PVA 3% flow rate was constant, droplet length and time period decreased as oil flow rate increased, but droplet frequency increased. When PVA 3% and oil flow rate ratio was constant, droplet length and time period decreased as flow rate increased, but droplet frequency increased. All that case, Standard deviation of droplet formation have less than 5% at averaged droplet length and regular-sized droplets were reproducibly formed.

  • PDF

Effects of Co-current and Cross Flows on Circular Enhanced Gravity Plate Separator Efficiencies

  • Ngu, Lock Hei;Law, Puong Ling;Wong, Kien Kuok
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.151-155
    • /
    • 2014
  • This study compares the effects of flow on oil and suspended solids removal efficiencies in circular enhanced gravity plate separator equipped with coalescence medium. Coalescence medium acts to capture rising oil droplets and settling solid particles and assist in the coalescence of oil and coagulation of solid. The circular separator uses an upflow center-feed perforated-pipe distributor as the inlet. The co-current flow is achieved using 4 increasing sizes of frustum, whereas cross flow uses inclined coalescence plates running along the radius of the separator. The different arrangement gave the cross flow separator a higher coalescence plan area per operational volume, minimal and constant travelling distance for the oil droplets and particles, lower retention time, and higher operational flowrate. The cross flow separator exhibited 6.04% and 13.16% higher oil and total suspended solids removal efficiencies as compared to co-current flow.

A Numerical Analysis of Flow Characteristics and Oil Separation Performance for Cyclone Oil Separator Designs (사이클론 오일분리 장치 형상변화에 따른 유동 및 오일분리 성능에 관한 해석적 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Woo, Keun-Sup;Yoon, Yu-Bin;Park, Young-Joon;Lee, Dug-Young;Kim, Hyun-Chul;Na, Byung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.22-28
    • /
    • 2008
  • A closed type crankcase ventilation system has been adopted to engines to prevent emission of blow-by gas to atmosphere. In the early closed type crankcase ventilation system, blow-by gas which contains engine lubricating oil is re-circulated into the intake system. The blow-by gas containing oil mist leads to increased harmful emissions and engine problems. To reduce loss of the engine oil, a highly-efficient oil separation device is required. Principle of a cyclone oil separator is to utilize centrifugal force in the separator and, therefore, oil separator designs depend on rotational flow which causes the centrifugal force. In this paper, flow characteristics and oil separation performances for cyclone type designs are calculated with CFD methodology. In the CFD model, oil particle was injected on a inlet surface with Rosin-Rammler distribution and uniform distribution. The major design parameters considered in the analysis model are inlet area, cone length and outlet depth of the oil separator. As results, reducing inlet area and increasing cone length increase oil separation performance. Changes in outlet depth could avoid interference between rotational flow and outlet flow in the cyclone oil separator.