• 제목/요약/키워드: Oil Film Method

검색결과 135건 처리시간 0.029초

유막 코팅 노즐의 유동특성에 관한 CFD해석 (CFD Analysis on Flow Characteristics of Oil Film Coating Nozzle)

  • 정세훈;안승일;신병록
    • 한국유체기계학회 논문집
    • /
    • 제11권5호
    • /
    • pp.50-56
    • /
    • 2008
  • Metal cutting operations involve generation of heat due to friction between the tool and the pieces. This heat needs to be carried away otherwise it creates white spots. To reduce this abnormal heat cutting fluid is used. Cutting fluid also has an important role in the lubrication of the cutting edges of machine tools and the pieces they are shaping, and in sluicing away the resulting swarf. As a cutting fluid, water is a great conductor of heat but is not stable at high temperatures, so to improve stability an emulsion type mixed fluid with water and oil is often used. It is pumped over the cutting site of cutting machines as a state of atomized water droplet coated with oil by using jet. In this paper, to develop cutting fluid supplying nozzle to obtain ultra thin oil film for coating water droplet, a numerical analysis of three dimensional mixed fluid Jet through multi-stage nozzle was carried out by using a finite volume method. Jet flow characteristics such as nozzle exit velocity, development of mixing region, re-entrance and jet intensity were analyzed. Detailed mixing process of fluids such as air, water and oil in the nozzle were also investigated. It is easy to understand complex flow pattern in multi-stage nozzle. Important flow Information for advance design of cutting fluid supplying nozzle was drawn.

오일공급 방향에 따른 타원형 베어링 손실 및 온도 특성 (Effect of Oil Supply Direction on Power Loss and Bearing Temperature of Elliptical Bearing)

  • 방경보;최용훈;조용주
    • Tribology and Lubricants
    • /
    • 제34권4호
    • /
    • pp.138-145
    • /
    • 2018
  • Elliptical bearings are widely used for large steam turbines owing to their excellent load carrying capacity and good dynamic stability. Power loss in bearings is an extremely important parameter, especially for high turbine capacities. Optimization of operation conditions and design variables such as bearing clearance and bearing length can reduce the power loss in elliptical bearings. Although changes in the oil supply method have served to increase the efficiency of the tilting pad journal bearing, it has not explicitly improved elliptical bearings. In this study, we verify the static characteristics of an elliptical bearing by changing the direction of oil supply. We evaluate the bearing power loss and bearing metal temperature, and compare the bearing performance and reliability in different test cases. The direction of oil supply is $90^{\circ}$ (9 o'clock) and $270^{\circ}$ (3 o'clock) when the rotor rotates in a counterclockwise direction. We use an elliptical bearing with an inner diameter and active length of 220.30 and 110.00 mm, respectively. Bearing power loss and bearing metal temperatures are measured and evaluated by rotor rotational speed, oil flow rate, and bearing load. The results reveal a 20 reduction in the power loss when the direction of oil supply is 90. Furthermore, the oil film on the upper part of the bearing has a high temperature when the direction of oil supply is $90^{\circ}$. In contrast, when the direction of oil supply is $270^{\circ}$, the oil film on the upper part of the bearing is relatively cold.

Influence of Blade Profiles on Flow around Wells Turbine

  • Suzuki, Masami;Arakawa, Chuichi
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.148-154
    • /
    • 2008
  • The Wells turbine rotor consists of several symmetric airfoil blades arranged around a central hub, and the stagger angle is 90 degrees. These characteristics simplify the total construction of OWC type wave energy converters. Although the Wells turbine is simple, the turbine produces a complicated flow field due to the peculiar arrangement of blades, which can rotate in the same direction irrespective of the oscillating airflow. In order to understand these flows, flow visualization is carried out with an oil-film method in the water tunnel. This research aims to analyze the mechanism of the 3-D flows around the turbine with the flow visualization. The flow visualization explained the influence of attack angle, the difference between fan-shaped and rectangular wings, and the sweep angle.

300MW급 증기터빈의 베어링 윤활유 온도조정에 의한 오일휩 제거방법에 관한 연구 (A Study of Bearing Oil Whip Treatment in 300MW Steam Turbine with Oil Temperature Change)

  • 황달연;김화영;문승재;이재헌
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.244-247
    • /
    • 2008
  • The phenomena of oil whip in steam turbine takes place for the un-balancing force between rotor shaft and bearing oil film. The several parameters that affect onset of oil whip have been well known. However, the major parameter of oil whip is shaft mis-alinement. A oil whip causes the high vibration and the shutdown of rotor system. We mostly stop the steam turbine to adjust a shaft re-alinement concerning oil whip. In this case, It needs many costs for maintenance and long shutdown times. In this study, we study and observe the oil whip of the 300MW steam turbine in many years and we conduct the field test for another steam turbine for reducing vibration from oil whip. The results of this study are that a oil whip takes place with a particular rotating speed or a particular turbine output and the oil temperature change is a very effective method for on-line oil whip treatment.

  • PDF

유압실린더내 정압베어링의 특성에 관한 연구 (A Study on the Characteristic of the Hydrostatic Bearing in the Hydraulic Cylinder)

  • 강형선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.522-527
    • /
    • 2008
  • On designing of hydrostatic bearing, load, quantity of oil, stiffness and friction load are considered as basic characteristics. For the analysis of these basic characteristics, pressure distribution by oil film is obtained. Speed of piston, clearance, leakage of oil, eccentricity, shape and roughness of bearing affect the results which are the analysis of basic characteristics of load, quantity of oil, stiffness and friction load. The relationship among those factors are required for optimum designing of hydrostatic bearing for machining tool. Reynold's Equation is calculated through finite element method. Load, leakage of quantity and pressure distribution as variation of length, land length ratio, eccentricity and axial velocity of bearing are investigated. Then optimum design variables are obtained.

저널베어링의 윤활상태 판별 기법에 관한 연구 (A Study on the Identification Method of Lubrication Characteristics for Journal Bearing)

  • 김명환;이상돈;조용주
    • Tribology and Lubricants
    • /
    • 제25권1호
    • /
    • pp.56-60
    • /
    • 2009
  • A journal bearing is used in a hydrodynamic lubrication state, but it becomes a boundary lubrication state that asperity of a contact part touch each other when pressure is too high and an enough oil film is not formed by viscosity change due to lubricating oil temperature. At this time, abrasion due to contact between a journal and a bearing is unavoidable, and scuffing damage that the journal adheres to the bearing occurs if the process is repeated. Damage of the journal bearing is an important problem because it gives huge damage to a machine and can generate large accidents such as economic loss and human life damage. In this study, method for using the pull-up resistor concept was introduced as the monitoring technology. This monitoring system is important to enhance reliability of the engine.

FEM을 이용한 유정압테이블의 운동정밀도 해서(1. 단면지지형 테이블의 해석 및 실험적 검증) (Finite Element Analysis on the Motion Accuracy of Hydrostatic Table(1.st. Analysis and Experimental Verification on Single-side Table))

  • 박천홍;정재훈;이후상;김수태
    • 한국정밀공학회지
    • /
    • 제17권12호
    • /
    • pp.137-144
    • /
    • 2000
  • In order to achieve systematical method for improving motion accuracy of hydrostatic table, an algorithm using finite element method is proposed in this paper. Quantification of averaging effect of oil film on motion error is performed theoretically by analysis on the relationship between spacial frequency of rail form error and motion error of table. Influences of film stiffness and pocket size on the motion error of table are also analyzed theoretically. Validity of the algorithm is verified experimentally from the test on the motion error of table with three types of rail which have different form profile. Experimental results show that the algorithm is very effective to analyze theoretically the motion error of hydrostatic table.

  • PDF

300MW급 증기터빈의 베어링 윤활유 온도조정에 의한 오일휩 제거방법에 관한 연구 (A Case Study on the Reduction of Noise and Vibration at the Backpass Heat Surface in the Power Plant Boiler)

  • 황달연;문승재;이재헌
    • 플랜트 저널
    • /
    • 제4권4호
    • /
    • pp.56-61
    • /
    • 2008
  • The phenomena of oil whip in steam turbines take place for the unbalance force between a rotor shaft and bearing oil film. The several parameters that affect onset of oil whip have been well known. However, the major parameter of oil whip is shaft mis-alinement. A oil whip causes the high vibration and the shutdown of rotor system. We mostly stop the steam turbine to adjust a shaft re-alinement concerning oil whip. In this case, it needs many costs for maintenance and long shutdown times. In this study, we study and observe the oil whip of the 300MW steam turbine in many years and we conduct the field test for another steam turbine for reducing vibration from oil whip. The results of this study are that a oil whip takes place with a particular rotating speed or a particular turbine output and the oil temperature change is a very effective method for on-line oil whip treatment.

  • PDF

Functional and Film-forming Properties of Fractionated Barley Proteins

  • Cho, Seung-Yong;Rhee, Chul
    • Food Science and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.889-894
    • /
    • 2009
  • Barley proteins are expected to have unique functional properties due to their high content of alcohol soluble protein, hordein. Since the barley proteins obtained by conventional isoelectric precipitation method cannot represent hordein fraction, barley proteins were fractionated to albumin, globulin, glutelin, and hordein with respect to extraction solvents. Functional properties and film-forming properties of solubility-fractionated barley proteins were investigated to explore their potential for human food ingredient and industrial usage. The 100 g of total barley protein comprised 5 g albumin, 23 g globulin, 45 g glutelin, and 27 g hordein. Water-binding capacities of barley protein isolates ranged from 140-183 mL water/100 g solid. Hordein showed the highest oil absorption capacity (136 mL oil/100 g), and glutelin showed the highest gelation property among the fractionated proteins. In general, the barley protein fractions formed brittle and weak films as indicated by low tensile strength (TS) and percent elongation at break (E) values. The salt-soluble globulin fraction produced film with the lowest TS value. Although films made from glutelin and hordein were dark-colored and had lower E values, they could be used as excellent barriers against water transmission.

광 간섭 현상을 이용한 나노 스케일의 유막두께 측정 (The measurement of Nano Scale film thickness using optical interferometry)

  • 윤영선;전필수;김현정;유재석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3178-3182
    • /
    • 2007
  • The interferometer method with nano-scale spatial resolution has been developed in this study. To enhance the accuracy of the previous developed method, the 14 bit cooled CCD camera with 1280 by 980 spatial resolution was applied to the measurement. And optical alignment has been carried out on the highly accurate position sensors with 500nm resolution so as to be able to calibrate the detected interference image with the field of view. Also the measurements were applied to the ultra thin oil film between the Al coated cylinder mirror with 38.1mm radius and 0.5mm cover glass to verify the developed method. The measured result showed the good agreement with the used cylinder curvature with ${\pm}$5.18run uncertainty.

  • PDF