• Title/Summary/Keyword: Oil Field

Search Result 871, Processing Time 0.036 seconds

Evaluation of Maritime Safety Technology for Official Development Assistance (ODA) (국제협력사업 추진을 위한 해사안전기술 평가 연구)

  • Oh, Se-Woong;Jeon, Tae-Byung;Lee, Moon-Jin;Suh, Sang-Hyun;Cho, Dong-Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.1
    • /
    • pp.81-91
    • /
    • 2010
  • IMO(International Maritime Organization) and the Shipping World rave complied with various kinds of international regulations for maritime safety and marine environmental protection, but the main reason of maritime accidents is that developing countries cannot implement maritime safety related regulations. Although Korea has been a member of the "A group" council of IMO, maritime technology transfer records of Korea are not good. To promote the project of official development assistance in Korea, it is required to select the technology which has a high degree of importance in the fields of maritime safety and has a high degree of demand on the transfer to developing countries, and to concentrate on the selected technology. So, it is necessary to draw valuation factors for maritime safety technology and to decide the priority in order among maritime safety technologies on the basis of valuation factors. Because the weights which show the degree of importance among valuation factors are different from factor to factor, interdependent relationship between factors should be considered on evaluation. In this study, the valuation factors were divided into three groups as the maturity of maritime safety technology, the promotion probability of projects and the degree of importance of technology, and the detailed factors of each group were drawn. A model which used Fuzzy AHP and limiting probability to consider the weights of importance and correlation among valuation factors was developed. To adopt this model, nine types of maritime safety technology in the field of maritime safety information were selected and points were scored for each technology through evaluation. In conclusion, first, ENC related technology was scored to be the highest as 0.0139. Second, the point of ship monitoring technology was scored as 0.0133. Last, oil spill response technology was scored as 0.0132.

Innovation Technology Development & Commercialization Promotion of R&D Performance to Domestic Renewable Energy (신재생에너지 기술혁신 개발과 R&D성과 사업화 촉진 방안)

  • Lee, Yong-Seok;Rho, Do-Hwan
    • Journal of Korea Technology Innovation Society
    • /
    • v.12 no.4
    • /
    • pp.788-818
    • /
    • 2009
  • Renewable energy refers to solar energy, biomass energy, hydrogen energy, wind power, fuel cell, coal liquefaction and vaporization, marine energy, waste energy, and liquidity fuel made out of byproduct of geothermal heat, hydrogen and coal; it excludes energy based on coal, oil, nuclear energy and natural gas. Developed countries have recognized the importance of these energies and thus have set the mid to long term plans to develop and commercialize the technology and supported them with drastic political and financial measures. Considering the growing recognition to the field, it is necessary to analysis up-to-now achievement of the government's related projects, in the standards of type of renewable energy, management of sectional goals, and its commercialization. Korean government is chiefly following suit the USA and British policies of developing and distributing renewable energy. However, unlike Japan which is in the lead role in solar rays industry, it still lacks in state-directed support, participation of enterprises and social recognition. The research regarding renewable energy has mainly examinedthe state of supply of each technology and suitability of specific region for applying the technology. The evaluation shows that the research has been focused on supply and demand of renewable as well as general energy and solution for the enhancement of supply capacity in certain area. However, in-depth study for commercialization and the increase of capacity in industry followed by development of the technology is still inadequate. 'Cost-benefit model for each energy source' is used in analysis of technology development of renewable energy and quantitative and macro economical effects of its commercialization in order to foresee following expand in related industries and increase in added value. First, Investment on the renewable energy technology development is in direct proportion both to the product and growth, but product shows slightly higher index under the same amount of R&D investment than growth. It indicates that advance in technology greatly influences the final product, the energy growth. Moreover, while R&D investment on renewable energy product as well as the government funds included in the investment have proportionate influence on the renewable energy growth, private investment in the total amount invested has reciprocal influence. This statistic shows that research and development is mainly driven by government funds rather than private investment. Finally, while R&D investment on renewable energy growth affects proportionately, government funds and private investment shows no direct relations, which indicates that the effects of research and development on renewable energy do not affect government funds or private investment. All of the results signify that although it is important to have government policy in technology development and commercialization, private investment and active participation of enterprises are the key to the success in the industry.

  • PDF

Production of yuzu granules using enzyme treated yuzu pulp powder and evaluation of its physiochemical and functional characterization (유자박 식이섬유를 이용한 유자과립 제조 및 이화학적 특성조사)

  • Seong, Hyeon Jun;Lee, Bo-Bae;Kim, Duck-Hyun;Lee, Seung-Hyun;Ha, Ji-Young;Nam, Seung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.382-390
    • /
    • 2021
  • In this study, solubilized yuzu pulp powder (EYP) was produced using enzyme treated yuzu pulp powder (YP) and used to manufacture yuzu granules (0-20% EYP content). The physicochemical, product stability, and functional properties of Yuzu granules were compared among five enzyme treatments. Among the five treatments, CL had the highest YP solubilization yield (48.68%). Microstructural observation of EYP using FE-SEM revealed that its surface became irregular and porous after enzymatic treatment. Compared to YP, EYP had 2 times lower insoluble dietary fibers and 3 times lower hemicellulose and cellulose content. Among the yuzu granules, IV (yuzu granules with 15% EYP) had an excellent water and oil holding capacity and flowability. IV granule had the highest narirutin and hesperidin content of 3.4 mg and 2.2 mg/g DW, respectively and the highest antioxidant (68.4%) and tyrosinase inhibitory activities (82.5%). Therefore, EYP or granule with EYP can be used as a functional component in food industry or pharmaceutical field.

A Study on the Flammability and Combustion Risk of Biodiesel Mixture (바이오디젤 혼합물의 인화 및 연소 위험성에 관한 연구)

  • Kim, Ju Suk;Ko, Jae Sun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.10-24
    • /
    • 2021
  • Purpose: The purpose of this study is to determine the dangers of biodiesel and general diesel mixtures currently used as alternative fuels by equipment (tag method and penski Marten method) and to determine the difference between flash point and combustion point (closed, open) according to test methods. It is intended to be used as a reference material for identification and evaluation of firecausing substances by confirming the risk of mixtures by comparative analysis and measurement, and establishing a risk assessment method for chemical substances. Method: Flash point test method and result treatment were tested based on ASTM and KS M mode, which are tag sealing and pen schematense test methods used as flash point and combustion point test methods for crude oil and petroleum products. The manufacturer of the equipment used in this experiment was a test equipment that satisfies the test standards of KS M 2010 with equipment produced by TANAKA of Japan. The flash point and combustion point were measured, and the flash point according to the test method of biodiesel and general diesel mixture ( Closed, open), and the ignition point of a mixture of biodiesel and general diesel was compared and analyzed for ignition risk compared with conventional diesel. Results: Looking at the experimental results, first, as an analysis of the risk of flammability of the mixture, the flash point of a substance containing 70% biodiesel was found to be about 92℃ based on general diesel with a flash point of 64.5℃, and gasoline and biodiesel or When the biodiesel mixture was synthesized, it was confirmed that the flash point tends to decrease. In addition, the difference between the flash point and the combustion point was analyzed as about 20 ~ 30℃, and when a small amount of gasoline or methanol was mixed, the flash point was lowered, but it was confirmed that the combustion point was similar to that of the existing mixture. Conclusion: In this study, in order to secure the effectiveness of the details of the criteria for judging dangerous materials in the existing Dangerous Materials Safety Management Act, and to secure the reliability and reproducibility of the judgment of dangerous materials, we confirm the criteria for judging the risk of the mixture through an experimental study on flammable mixtures. It will be able to provide reference data for experimental criteria for flammable liquids that are regulated in the field. In addition, if this study accumulates know-how on experiment by test method, it is expected that it can be used as a basis for research on risk assessment and research on dangerous goods.

Soil CO2 Monitoring Around Wells Discharging Methane (메탄 유출 관정 주변의 토양 CO2 모니터링)

  • Chae, Gitak;Kim, Chan Yeong;Ju, Gahyeun;Park, Kwon Gyu;Roh, Yul;Lee, Changhyun;Yum, Byoung-Woo;Kim, Gi-Bae
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.407-419
    • /
    • 2022
  • Soil(vadose zone) gas compositions were measured for about 3 days to suggest a method for monitoring and interpreting soil gas data collected around wells from which methane(CH4) is outflowing. The vadose zone gas samples were collected within 1 m around two test wells(TB2 and TB3) at Pohang and analyzed for CO2, CH4, N2 and O2 concentrations in situ. CO2 flux was measured beside TB2. In addition, gas samples from well head in TB2 and atmospheric air samples were collected for comparison. Carbon isotopes of CO213CCO2) of samples collected on the last day of the study period were analyzed in the laboratory. The two test wells (TB2 and 3) were 12.7 m apart and only TB3 was cemented to the surface. According to the bio-geochemical process-based interpretation, the relationships between CO2 and O2, N2, and N2/O2 of vadose zone gas were plotted between the lines of CH4 oxidation and CO2 dissolution. In addition, the CH4 concentrations of gas samples from the wellhead of the uncemented well (TB2) were 5.2 times higher than the atmospheric CH4 concentration. High CO2 concentrations (average 1.148%) of vadose zone gas around TB2 seemed to be attributed to the oxidation of CH4. On the other hand, the vadose zone CO2 around the cemented well(TB3) showed a relatively low concentration(0.136%). This difference indicates that the vadose zone gas(including CO2) around the CH4 outflowing well were strongly affected by well completion(cementing). This study result can be used to establish strategies for environmental monitoring of soil around natural gas sites, and can be used to monitor leakage around injection and observation wells for CO2 geological storage. In addition, the method of this study is useful for soil monitoring in natural gas storage and oil-contaminated sites.

Preparation of Silica Nanoparticles via Recycling of Silicon Sludge from Semiconductor Dicing Process and Electro-responsive Smart Fluid Application (반도체 다이싱 공정에서 발생하는 실리콘 슬러지를 재활용한 실리카 나노입자의 제조 및 전기감응형 유체로의 응용)

  • Yeon-Ryong Chu;Suk Jekal;Jiwon Kim;Ha-Yeong Kim;Chan-Gyo Kim;Minki Sa;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.15-25
    • /
    • 2023
  • In this study, silicon sludge from semiconductor dicing process is recycled to fabricate silica nanoparticles, which are applied as dispersing materials for electro-responsive (ER) smart fluid. In specific, metal impurities are removed from silicon sludge by acid washing to obtain the high-purity silicon powder. And then, silica nanoparticles are synthesized by facile hydrothermal method employing the silicon powder as reactant material. To control the size of silica nanoparticles, the reaction time of hydrothermal method is varied as 8, 15, 20, and 30 hours are applied to control the size of silica nanoparticles. Sizes of silica nanoparticles are increased proportionally to the reaction time owing to the increased numbers of hydrolysis and condensation reactions. As-synthesized silica nanoparticles are prepared as electro-responsive smart fluids by dispersing into silicon oil. Silica nanoparticles synthesized by 30 hours of hydrothermal reaction (SiO2-H30) exhibit the highest shear stress of 21.4 Pa under an applied electric field strength of 3.0kV mm-1. Such enhancement in ER performance of SiO2-H30 among various silica nanoparticles are attribute to the reinforcing effect originated from the mixed particle size, which allowing the formation of rigid chain-like structures. Accordingly, this study successfully propose a recycling method of silicon sludge to synthesize silica nanoparticles and their derived ER fluids, which may suggest new possibility to ESG management emphasizing the eco-friendliness.

Lithium Distribution in Thermal Groundwater: A Study on Li Geochemistry in South Korean Deep Groundwater Environment (온천수 내 리튬 분포: 국내 심부 지하수환경의 리튬 지화학 연구)

  • Hyunsoo Seo;Jeong-Hwan Lee;SunJu Park;Junseop Oh;Jaehoon Choi;Jong-Tae Lee;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.729-744
    • /
    • 2023
  • The value of lithium has significantly increased due to the rising demand for electric cars and batteries. Lithium is primarily found in pegmatites, hydrothermally altered tuffaceous clays, and continental brines. Globally, groundwater-fed salt lakes and oil field brines are attracting attention as major sources of lithium in continental brines, accounting for about 70% of global lithium production. Recently, deep groundwater, especially geothermal water, is also studied for a potential source of lithium. Lithium concentrations in deep groundwater can increase through substantial water-rock reaction and mixing with brines. For the exploration of lithim in deep groundwater, it is important to understand its origin and behavior. Therefore, based on a nationwide preliminary study on the hydrogeochemical characteristics and evolution of thermal groundwater in South Korea, this study aims to investigate the distribution of lithium in the deep groundwater environment and understand the geochemical factors that affect its concentration. A total of 555 thermal groundwater samples were classified into five hydrochemical types showing distinct hydrogeochemical evolution. To investigate the enrichment mechanism, samples (n = 56) with lithium concentrations exceeding the 90th percentile (0.94 mg/L) were studied in detail. Lithium concentrations varied depending upon the type, with Na(Ca)-Cl type being the highest, followed by Ca(Na)-SO4 type and low-pH Ca(Na)-HCO3 type. In the Ca(Na)-Cl type, lithium enrichment is due to reverse cation exchange due to seawater intrusion. The enrichment of dissolved lithium in the Ca(Na)-SO4 type groundwater occurring in Cretaceous volcanic sedimentary basins is related to the occurrence of hydrothermally altered clay minerals and volcanic activities, while enriched lithium in the low-pH Ca(Na)-HCO3 type groundwater is due to enhanced weathering of basement rocks by ascending deep CO2. This reconnaissance geochemical study provides valuable insights into hydrogeochemical evolution and economic lithium exploration in deep geologic environments.

Evaluation of Application Possibility for Floating Marine Pollutants Detection Using Image Enhancement Techniques: A Case Study for Thin Oil Film on the Sea Surface (영상 강화 기법을 통한 부유성 해양오염물질 탐지 기술 적용 가능성 평가: 해수면의 얇은 유막을 대상으로)

  • Soyeong Jang;Yeongbin Park;Jaeyeop Kwon;Sangheon Lee;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1353-1369
    • /
    • 2023
  • In the event of a disaster accident at sea, the scale of damage will vary due to weather effects such as wind, currents, and tidal waves, and it is obligatory to minimize the scale of damage by establishing appropriate control plans through quick on-site identification. In particular, it is difficult to identify pollutants that exist in a thin film at sea surface due to their relatively low viscosity and surface tension among pollutants discharged into the sea. Therefore, this study aims to develop an algorithm to detect suspended pollutants on the sea surface in RGB images using imaging equipment that can be easily used in the field, and to evaluate the performance of the algorithm using input data obtained from actual waters. The developed algorithm uses image enhancement techniques to improve the contrast between the intensity values of pollutants and general sea surfaces, and through histogram analysis, the background threshold is found,suspended solids other than pollutants are removed, and finally pollutants are classified. In this study, a real sea test using substitute materials was performed to evaluate the performance of the developed algorithm, and most of the suspended marine pollutants were detected, but the false detection area occurred in places with strong waves. However, the detection results are about three times better than the detection method using a single threshold in the existing algorithm. Through the results of this R&D, it is expected to be useful for on-site control response activities by detecting suspended marine pollutants that were difficult to identify with the naked eye at existing sites.

Redefinition of the Concept of Fishing Vessel and Legislation Adjustment (낚시어선 개념의 재정립과 법제 정비에 관한 연구)

  • Yeong-Tae Son
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.639-652
    • /
    • 2023
  • The fundamental background behind the introduction of the fishing vessel system is to allow petty small fishers to engage in pure fishery business activities with fishing vessels during normal times and engage in fishing vessel business only during specific periods (closed fishing season, etc.) thereby granting a qualification as an auxiliary tool for the economic activities of petty small fishers. In addition, fishing boats are allowed to engage in excursion ship activities using fishing vessels registered under the Fishing Vessels Act, the form of fishing vessels should also have a general and universal structure that is practically easy to engage in fishing activities in the field in accordance with the relevant regulations. However, most fishing vessel proprietors are currently focusing only on increasing income, and rather than building fishing vessels in a reasonable form suitable for the original purpose of general fishing vessels, they prefer an abnormal hull form equivalent to expediency, that is biased hull structure biased toward the fishing vessel business. As a result, it is causing serious problems in safety management as well as conflict [damaging relative equity in government support measures (tax-free oil supply, etc.), and depletion of livelihood-type fish stocks] with fishing vessel forces who consider the fishing vessel business only to be a part of the side job among all fishery business activities. Meanwhile, the most fundamental cause of this problem is that the current Fishing Management and Promotion Act, limits the concept of fishing vessels to fishing vessels registered under the Fishing Vessels Act, and applies survey standards accordingly. Accordingly, in this study, through analysis of the distribution status of fishing vessels, structural characteristics, operation status of fishing vessels, and the government's fishing promotion policies, etc., the relevant laws (regulations) have been reorganized to suit the current reality of the concept of fishing vessels to separate the current fishing vessel from fishing vessels and operate it as a fishing-only vessel.

Effects of Adsorption and Decomposition on the Removal of Total Organic Carbon (TOC) in Oil Wastewater by Cellulose-based Pseudo Graphene and Persulfate (셀룰로오스 기반 유사-그래핀과 과황산염에 의한 압연류 폐수내 총유기탄소(TOC) 흡착 및 분해효과 연구)

  • Song-I Kim;Ji-Young Shin;Kyung-Chul Park;Jae-Kyu Yang;Dong-Su Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.3
    • /
    • pp.5-18
    • /
    • 2024
  • Chemical oxygen demand (COD), an organic material measurement index, has a limit to the management of the total amount of all organic materials including non-degradable organic materials due to low oxidation rate. So total organic carbon (TOC) that can measure organic materials more accurately is introduced and used as a measurement index. Several environmental companies including company A in Gyeonggi-do dilute raw wastewater first and then treats it with chemicals. And an activated carbon is used at the rear stage to treat total organic carbon even though various treatment processes can be applied to reduce TOC in wastewater. There are some problems such as use of a lot of diluting water and generation of an excessive amount of sludge, so it is urgent to come up with an alternative plan. Therefore, in this study, an application experiment was conducted on two different methods for improving the TOC reduction efficiency of waste water from Company A. The first method is the evaluation of the substitution potential of powered activated carbon(PAC), an adsorbent currently used, by manufacturing cellulose-based graphene like carbon (CGLC). This first study showed that CGLC had about 10% higher TOC adsorption efficiency than commercial PAC, showing the possibility of being applied as an alternative adsorbent for PAC in water treatment sites. The second method relates to the removal of TOC by sulfate radials produced by persulfate (PS) activation. Two activation methods were applied: using CGLC and PAC as carbon-based catalyst and using the high temperature of wastewater for PS activation. As a result of using PAC and CGLC as PS activation materials, the TOC removal rate was lower than the adsorption amount of TOC by CGLC and PAC due to excessive chlorine ions present in the real wastewater. However, as a result of using the high water temperature (55~60℃) of the field wastewater for PS activation, it showed a much greater TOC removal efficiency than PAC alone, CGLC alone, and using a carbon-based catalyst for PS activation. When PS was injected more than 0.5%, it showed a TOC removal efficiency of 95% or more within 24 hr. In addition, when PS was injected more than 0.3%, the TOC concentration could be lowered to less than 75 ppm, which is the wastewater discharge standard applied to company A. When these results were summarized, raw wastewater of high temperature can be treated with a simple process of only adding of PS and discharged by treating TOC below the wastewater discharge standard applied to company A.