• 제목/요약/키워드: Oil Damper

검색결과 101건 처리시간 0.022초

전동차 횡댐퍼 내구성 향상을 위한 오일씰 형상 개선 (Improvement of Oil Seal Geometry to Improve Durability of Lateral Damper of Electric Multiple Unit)

  • 김용욱;구정서
    • 한국안전학회지
    • /
    • 제33권4호
    • /
    • pp.90-97
    • /
    • 2018
  • As the result(also after it's been carried out the damping force test with 800ea lateral dampers of 50ea trainset from entering heavy maintenance workshop to implement heavy maintenance inspection cycle, there were 86.25%(650ea) which were out of $350kg{\pm}15%$ of the standard value of damping force compared to the reference value. After the implementation of heavy maintenance inspection cycle, it's been examined damping force test with total samples 32ea(samples 8ea per a trainset) from actual running EMU 4ea trainset. As the result, percent defective was 84.4%(27ea), which was a very high level. System. The lateral damper's the failure cause of damping force defective was oil leakage caused by tearing crack of oil seal and foreign material in oil iron 473 ~ 1932 times higher than that of new oil, copper 36 ~ 98 times higher than that of new oil reduced oil amount cycling damping valve. It resulted from the change cause of damping force. In the static analysis on the shape of lateral damper oil seal's the existing and improved product, the stress of the improved product was smaller than that of the existing product. In the fatigue analysis, the existing product showed a low life in the upper area. However, in case of the improved product, it could be confirmed that the destruction did not occur up to the specified 1.0e + 006 cycles and the lifetime was further improved in most areas.

Seismic Retrofit of High-Rise Building with Deformation-Dependent Oil Dampers against Long-Period Ground Motions

  • Aono, Hideshi;Hosozawa, Osamu;Shinozaki, Yozo;Kimura, Yuichi
    • 국제초고층학회논문집
    • /
    • 제5권3호
    • /
    • pp.177-186
    • /
    • 2016
  • Along the subduction-zone of the western Japanese islands, large earthquakes are expected occur around the middle of this century, and long-period ground motions will reach major urban areas, shaking high-rise buildings violently. Since some old high-rise buildings were designed without considering long-period ground motions, reinforcing such buildings is an important issue. An effective method to reinforce existing high-rise buildings is installing additional dampers. However, a problem with ordinary dampers is that they require reinforcement of surrounding columns and girders to support large reaction forces generated during earthquake ground motion. To solve this problem, a deformation-dependent oil damper was developed. The most attractive feature of this damper is to reduce the damping force at the moment when the frame deformation comes close to its maximum value. Due to this feature, the reinforcement of columns, girders, and foundations are no longer required. The authors applied seismic retrofitting with a deformation-dependent oil damper to an existing 54-story office building (Shinjuku Center Building) located in Shinjuku ward, Tokyo, in 2009 to suppress vibration under the long period earthquake ground motions. The seismic responses were observed in the 2011 Tohoku Earthquake, and it is clarified that the damping ratio was higher and the response lower by 20% as compared to the building without dampers.

Simultaneous optimal damper placement using oil, hysteretic and inertial mass dampers

  • Murakami, Yu;Noshi, Katsuya;Fujita, Kohei;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제5권3호
    • /
    • pp.261-276
    • /
    • 2013
  • Oil, hysteretic and inertial mass dampers are representatives of passive dampers used for smart enhancement of seismic performance of building structures. Since oil dampers have a nonlinear relief mechanism and hysteretic dampers possess nonlinear restoring-force characteristics, several difficulties arise in the evaluation of buildings including such dampers. The purpose of this paper is to propose a practical method for simultaneous optimal use of such dampers. The optimum design problem is formulated so as to minimize the maximum interstory drift under design earthquakes in terms of a set of damper quantities subject to an equality constraint on the total cost of dampers. The proposed method to solve the optimum design problem is a successive procedure which consists of two steps. The first step is a sensitivity analysis by using nonlinear time-history response analyses, and the second step is a modification of the set of damper quantities based upon the sensitivity analysis. Numerical examples are conducted to demonstrate the effectiveness and validity of the proposed design method.

회전체 진동 감소를 위한 마그네틱 댐퍼의 설계 및 응용 (Design and Application of Magnetic Damper for Reducing Rotor Vibration)

  • 김영배;이형복;이봉기
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.355-361
    • /
    • 2000
  • In this study, active control magnetic actuator for reducing vibration of rotor system is performed. Identification, modeling, simulation, control system design, and evaluation of active magnetic damper system have been researched. Power amplifier modeling, connected magnetic actuator and augmented by system identification, is included to establish a magnetic damper simulation which provides close performance correspondence to the physical plant. A magnetic actuator, digital controller using DSP(Digital Signal Processor), and bipolar operational power supply/amplifiers are developed to show the effectiveness of reducing rotor vibration. Also the curve fitting procedure to obtain the transfer function of frequency dependent components is developed. Two kinds of test are executed as sliding and oil bearing. Results presented in this paper will provide a well-defined technical parameters in designing magnetic damper system for the proposed rotor.

스퀴즈 필름 댐퍼의 디지탈 제어 (A Digital Control of Squeeze Film Damper)

  • 송용한;최현석;최세헌;임윤철
    • Tribology and Lubricants
    • /
    • 제14권3호
    • /
    • pp.24-31
    • /
    • 1998
  • A new type squeeze film damper is proposed and its dynamic characteristics are investigated experimentally. The new one has a pulsating flow supply system which properly adds high pressure oil to the oil film of the damper so that the rotor vibration can be controlled actively. As the result, the amplitude of the rotor vibration can be reduced considerably. The algorithm which compensates the phase lag of servo valve as well as the high-performance servo valve are required in order that a new type squeeze film damper can be more effective device to attenuate the rotor vibration than typical one.

다구찌법을 이용한 ER 댐퍼의 강건 설계 (Robust Design of an ER Damper using Taguchi Method)

  • 윤영민;배광식;김재환;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.157-162
    • /
    • 2003
  • This Paper presents a robust design of an Electrorheological(ER) damper using Taguchi method. Taguchi method is a robust design method that determines control parameters in the presence of noise effect. Electrode length, electrode gap, base oil viscosity and the weight ratio of ER particles are chosen for the control parameters and the temperature is considered to be a noise factor. The sensitivity of each factor with signal-to-noise(S/N) ratio and analysis of variance are investigated. The analysis results show that the electrode length and base oil viscosity of the ER fluid mostly affect the damping force in the absence of electric field. On the other hand, when the voltage is applied to the ER damper, the electrode length and the weight ratio of ER fluid exhibit significant effect. Based on the Taguchi method, an optimal configuration was designed and the robustness of the designed ER damper was validated by comparing the analysis and experimental results.

  • PDF

철도 차량용 오일댐퍼 고무부시의 유한요소해석 및 내구성 평가에 관한 연구 (A Study on FEM Analysis and its Endurance Evaluation of an Oil-Damper Rubber Bush for a Railway Vehicle)

  • 김호경;박진호;최덕호;양경탁;이영인
    • 한국안전학회지
    • /
    • 제21권2호
    • /
    • pp.15-21
    • /
    • 2006
  • The railroad bogie's components experience repeated loading during service. Especially, oil damper bush has been fatigue fractured on the plane between rubber and steel stem during service, and which results in inferior of performance of the bogie. In this study, in order to offer a proper maintenance method of the bush, bubber bush used for the oil damper was fatigue tested and its damage fraction during service was estimated. Also, FEM analysis on the bush was conducted. When 1400, 1200, and 1000kgf of repeated loads were applied to the oil damper bush, final damage fraction exhibited 63.7%, 50% and 40%. From the results of FEM analysis, deformation energy density was found to be $0.5452kgf/mm^{2}$ at an applied load of 1400kgf and the location with maximum value coincided with the fractured location of the bush. Finally, it will be desirable to adopt the normalized damage fraction rather than absolute damage fraction in estimating remaining service lifetime of the bush.

온도변화에 기인한 컴팩트디스크 플레이어의 전달율 (The Transmissibility of the Compact Disc Player due to Temperature)

  • 김병삼;이태근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.207-211
    • /
    • 2009
  • To investigate the vibration characteristics of compact disc player(CDP) due to excited vibration and disturbances, it is necessary to consider the transmissibility of the CDP. The disturbances as well as the temperature in the vehicle are the one of the important factors when CDP is designed. In this study, the effect on the temperature of the oil damper, which is applied to anti-vibration system of the CDP, was investigated. When the temperature was changed from -30 to 90 and the properties of the oil damper (hardness of rubber, viscosity of oil) were changed, the transmissibility was measured.

  • PDF

절단 원추형 Squeeze Film Damper 베어링과 회전축계의 동특성에 관한 연구 (A Study on the Dynamic Characteristics of Truncated Cone Type Squeeze Film Damper Bearing and Rotor System)

  • 윤석철
    • 한국안전학회지
    • /
    • 제12권1호
    • /
    • pp.9-18
    • /
    • 1997
  • This paper is a study on the dynamic characteristics of truncated cone type squeeze film damper(SFD) bearing and rotor system. This model can alter the radial oil film gap which Is Important to the performance of rotor-bearing system and manufactured easily to change the shape concept of traditional circular type SFD bearing. In theoretical analysis, the oil film pressure distribution, the oil film force, the film damping coefficient and the eccentricity ratio, etc. were induced with regard to the film inertia effect. The film damping coefficients and optimum design parameters are calculated. When unbalance parameter U is greater than 0.2, the nonlinear vibration such as "Jump" phenomena appears in the vicinity of rotor critical speed. At this time, the increases of bearing parameter U, journal distance S, Reynolds number Re can control this unstable vibration. The experimental results show that SFD hearing and rotor system which are designed according to the design parameters in the stable region are operated stably in rotational speed 9,600rpm without nonsynchronous behavior.

  • PDF

스크러버 연계 배기가스 배출제어용 3방향 댐퍼밸브의 구조 안전성 평가 (Structural Safety Evaluation of a 3-way Damper Valve for Scrubber-linked Exhaust Gas Control)

  • 김영훈
    • 한국산업융합학회 논문집
    • /
    • 제23권6_2호
    • /
    • pp.1007-1014
    • /
    • 2020
  • IMO(International Maritime Organization) continues to strengthen environmental regulations on exhaust gases such as CO2, NOx, SOx. As for sulfur oxides, from 1 January 2020, all ships on international voyages must use fuel with a sulfur content of 0.5% or less. Or, it is obligatory to use an exhaust gas treatment device that has the same effect. Shipping companies are using low-sulfur oil, replacing them with LNG fuel, or installing scrubbers that suppress sulfur oxide emissions. In the case of ships using bunker C oil, the load on the engine is lower when entering and departing, so the exhaust gas pressure is lowered and the scrubber cannot be properly utilized. Therefore, diesel oil with low sulfur content is used when entering and leaving the coast. When diesel oil is used, exhaust gas is directly discharged through the control system and piping system, and when bunker C oil is used, sulfur oxides are reduced by scrubbers through other control systems and piping systems to discharge exhaust gas. Accordingly, a company has developed a system called a three-way damper valve that can control exhaust gas emissions while integrating these two control systems and piping systems into one. In this study, the control characteristics of the integrated exhaust gas control system and structural safety against external loads in a high-temperature exhaust gas environment were reviewed.