• Title/Summary/Keyword: Oil Cooler

Search Result 87, Processing Time 0.027 seconds

A Study on the Thermal Performance of an Oil Cooler with Dual-cell Model (듀얼셀 모델을 이용한 오일쿨러의 방열성능 연구)

  • Park, Sang-Jun;Lee, Young-Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1111-1116
    • /
    • 2011
  • Heat exchangers have been used for the automotive, HVAC systems, and other various industrial facilities, so the market is very wide. In general, high-efficiency heat exchangers with louver fins are used in the dust-free environment while heat exchangers with wavy fins are used for dusty environment such as construction site, etc. In this study, numerical analysis has been performed for typical heat exchangers, used as oil coolers or fuel coolers, with dual cell model that can handle different grids for the air-side and oil-side of heat exchangers. First wind tunnel tests were conducted to obtain one-dimensional thermal performance data of heat exchangers. Then, heat release rates with varying air flows were numerically predicted using the three-dimensional dual-cell model. The model can greatly enhance the accuracy of thermal design since it includes the effects of nonuniformity of air flows across heat exchangers.

Study on Heat Transfer Characteristic of Shell-and-Tube Heat Exchanger with Plate Fin (판형 핀을 가진 원통-다관형 열교환기의 열전달 특성에 관한 연구)

  • Lim, Tae-Woo;Cho, Dong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.46-51
    • /
    • 2009
  • In this work, the experimental investigation was carried out to evaluate the heat transfer performance on the shell side of shell-and-plate finned tube heat exchanger with three different tube numbers(9, 13 and 19). Oil flowing on the shell side was cooled by cold water flowing inside the tubes. A shell-and-tube heat exchanger of an oil cooler consisted of one shell pass and two tube passes with the inner tube diameter of 8.82 mm and the tube length of 575 mm. Mass flow rate was varied from 1.2 to $6.0\;m^3/h$ for oil and from 0.6 to $3.0\;m^3/h$ for cold water, respectively. From the experiment of shell-and-plate finned tube heat exchanger, the overall heat transfer coefficient of heat exchanger with 9 tubes was compared with that of 13 and 19 tubes. It was found that the heat transfer coefficients in shell side of heat exchanger with 9 plate finned tubes showed averagely 1.8 times and 2.3 times higher than those of 13 and 19 tubes, respectively.

Effect of Suction Temperature and Compressor Frequency on Oil Circulation Ratio in a $CO_2$ Refrigeration System ($CO_2$ 냉동시스템에서 압축기의 흡입온도와 운전주파수가 오일 순환량에 미치는 영향)

  • Kim, Kyung-Jae;Lee, Ik-Soo;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.893-898
    • /
    • 2009
  • The quantity of discharged oil from a compressor is one of the most important issues for proper operation of refrigeration system. If the oil is increased in the system not only pressure drop is increased in other components, such as evaporator and gas cooler but also heat transfer coefficient in the heat exchangers is decreased. In addition, the lack of oil in the compressor may cause a critical of the system failure. In this study, one stage single rotary compressor is used for measuring oil circulation ratio(OCR). Carbon dioxide and PAG oil are used as refrigerant and lubricant. Using a U-tube densimeter, mixture density is measured. Characteristics of oil circulation ratio have been investigated for $CO_2$ rotary compressor in the range of operation frequency 45 Hz to 63 Hz and the suction temperature range of $0^{\circ}C$ to $15^{\circ}C$. The results obtained indicate that the oil circulation ratio is increased as the suction temperature or compressor operating frequency is increased.

  • PDF

The heat transfer characteristics of supercritical $CO_2$ in a horizontal tube (수평관내 $CO_2$의 초임계 영역내 열전달에 관한 연구)

  • Oh Hoo-Kyu;Lee Dong-Geon;Son Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.526-532
    • /
    • 2005
  • The cooling heat transfer coefficient of $CO_2$(R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter. a pre-heater and gas cooler(test section). The test section consists of a smooth, horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $400\;kg/m^{2}s$ and the inlet cooling pressure of 7.5 MPa to 10.0 MPa. The variation of heat transfer coefficient tends to decrease as cooling pressure of $CO_2$ increases. The heat transfer coefficient with respect to mass flux increases as mass flux increases. The pressure drop of $CO_2$ in the gas cooler shows a relatively good agreement with that predicted by Blasius's correlation. The local heat transfer coefficient of $CO_2$ agrees well with the correlation by Bringer-Smith.

Pressure Drop Characteristics of Supercritical $CO_2$ in a Helically Coiled Tube (헬리컬 코일관 내 초임계 $CO_2$의 압력강하 특성)

  • Yu, Tae-Geun;Kim, Dae-Hui;Roh, Geon-Sang;Ku, Hak-Geun;Oh, Hoo-Kyu
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.216-221
    • /
    • 2005
  • The heat transfer coefficient and pressure drop during gas cooling process of carbon dioxide in a helically coiled tube were investigated experimentally. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section is a double pipe type heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. It was made of a copper tube with the inner diameter of 4.85 [mm], the outer diameter of 6.35 [mm] and length of 10000 [mm]. The refrigerant mass fluxes were 200${\sim}$600 [kg/$m^2$s] and the average pressure varied from 7.5 [MPa] to 10.0 [MPa]. The main results were summarized as follows: The heat transfer coefficient of supercritical $CO_2$ increases, as the cooling pressure of gas cooler decreases. And the heat transfer coefficient increases with the increase of the refrigerant mass flux. The pressure drop decreases in increase of the gas cooler pressure and increases with increase the refrigerant mass flux.

  • PDF

Gas cooling heat transfer coefficient for $CO_2$-PEC9 mixture under supercritical condition (초임계조건에서 $CO_2$-PEC9 혼합물의 물성예측을 통한 냉각 열전달특성 연구)

  • Yun, Rin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.821-826
    • /
    • 2009
  • Due to environmental concerns $CO_2$ has been reintroduced as a potential candidate to replace HFCs in refrigeration systems. Oils are always required in a vapor-compression cycle, and thus actual working fluid in the system is $CO_2$-oil mixtures even though the oil concentrations are low at the heat exchangers and the expansion device. The cooling heat transfer coefficients for $CO_2$-oil mixtures under supercritical condition are required to designing of the gas cooler in the $CO_2$ refrigeration system properly. In the present study, the gas cooling heat transfer coefficients for $CO_2$-PEC9 was estimated by using the Gnileinski correlation, and the Kim and Ghajar model through the previous prediction models for the thermo-physical properties of $CO_2$-oil mixture. The Gnileinski correlation was used when the oil wt.% in the mixture is less than 1.0, and for the higher oil concentration the Kim and Ghajar model was applied. The estimated results agree with the experimental results conducted by the Dang et al.

  • PDF

Heat Transfer and Pressure Drop Characteristics of Supercritical $CO_2$ in a Helically Coiled Tube (초임계 $CO_2$의 헬리컬 코일관 내 열선단과 압력강하 특성)

  • Yu, Tae-Guen;Kim, Dae-Hui;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.353-358
    • /
    • 2005
  • The heat transfer and pressure drop of supercritical $CO_2$ cooled in a helically coiled tube was investigated experimentally. The experiments were conducted without oil in the refrigerant loop. The experimental apparatus of the refrigerant loop consist of receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section is a helically coiled tube in tube counter flow heat exchanger with $CO_2$ flowed inside the inner tube and coolant( water) flowed along the outside annular passage, It was made of it copper tube with the inner diameter of 4.55[mm]. the outer diameter of 6.35 [mm] and length of 10000 [mm]. The refrigerant mass fluxes were $200^{\sim}600$ [kg/m2s] and the inlet pressure of gas cooler varied from 7.5 [MPa] to 10.0 [MPa]. The main results are summarized as follows : The heat transfer coefficient of supercritical $CO_2$ increases, as the cooling pressure of gas cooler decreases. And the heat transfer coefficient increases with the increase of the refrigerant mass flux. The pressure drop decreases in increase of the gas cooler pressure and increases with increase the refrigerant mass flux.

  • PDF

Temperature Setpoint Algorithm for the Cooling System of a Tilting Train Main Transformer (틸팅열차 주변압기 냉각시스템의 온도설정알고리즘)

  • Han, Do-Young;Noh, Hee-Jeon;Won, Jae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.387-392
    • /
    • 2008
  • In order to improve the efficiency of the main transformer in a tilting train, the optimal operation of a cooling system is necessary. For the development of the optimal control algorithm of a cooling system, the mathematical model of a main transformer cooling system was developed. This includes the dynamic model of a main transformer, an oil pump, an oil cooler and a blower. The system algorithm of a cooling system, which consists of the temperature setpoint algorithm and the temperature control algorithm, was developed. Optimal oil temperatures of the inlet and the outlet of the main transformer were obtained by considering the total electric power consumption of the system. The oil inlet temperature was controlled by the blower and the oil outlet temperature was controlled by the oil pump. A simulation program was developed by using the mathematical model and the system algorithm. Simulation results showed that the system algorithm developed from this study may be effectively used to control the main transformer cooling system in a tilting train.

  • PDF

Thermal Characteristics of Hydrostatic Guideway in Ultra Precision Positioning (초정밀위치결정을 위한 유정압안내면의 온도특성 분석)

  • 박천홍;오윤진;황주호;이득우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.37-41
    • /
    • 2002
  • Thermal characteristics of hydrostatic guideway is largely depended on the temperature of supplied oil. For improving the positioning accuracy of hydrostatic guideway, relationship between setting temperature of oil cooler and thermal characteristics is analyzed, and influence of thermal characteristics on positioning accuracy is also analyzed experimental1y in this paper. Laser scale which has 0.01 $\mu\textrm{m}$ of resolution is used as feed-back unit. From the experimental results, it is confirmed that positioning error and repeatability is minimize upto 0.21 $\mu\textrm{m}$ and 0.18 $\mu\textrm{m}$ when the temperature of supplied oil is setting equal to temperature of atmosphere, and also confirmed that thermal deformation, which occurs by the temperature deviation between table and rail or scale supporter, works as limit of repeatability in long time operation.

  • PDF

The Study on Application of Hybrid Insulation System for Thermally Upgraded Distribution pole Transformers (주상변압기 열적 특성 향상을 위한 복합절연 시스템 적용)

  • Lee, B.S.;Song, I.K.;Lee, J.B.;Kim, D.M.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1896-1898
    • /
    • 2002
  • In this paper, to developing thermally and mechanically upgraded ones, we dismounted pole transformers used in the fields for over 13 years and conducted aged oil analysis. Also, when the cellulose and aramid papers in test cell were aging with oil at $130^{\circ}C$ for 3000 hours, with the testing period cellulose paper deteriorated more rapidly than the others. For example dielectric strength and dissipation factor of papers deteriorated with aging time. For evaluation of thermal aging characteristics, a mineral oil-immersed transformer was constructed with hybrid insulation system comprised of aramid paper and cellulose insulation. A Hybrid system has economic advantages. Cellulose materials are confined to cooler regions of the transformer winding. And aramid papers are served to insulate contact parts of hot conductors.

  • PDF