• 제목/요약/키워드: Offshore wind power generation

검색결과 92건 처리시간 0.02초

동해 부유식 해상풍력발전단지 내 참다랑어 양식장 조성에 관한 연구 (A Study on the Building of Tuna Farming in Floating Offshore Wind Power Generation Field at East Sea)

  • 최군환;김미정;장기호;김효선
    • 한국해안·해양공학회논문집
    • /
    • 제33권5호
    • /
    • pp.179-186
    • /
    • 2021
  • 재생에너지 3020 이행계획, 한국판 뉴딜 계획 등에 따라 신재생에너지 생산 비중 증가 대응과 해상풍력발전 12GW 건설을 위해 어업생활권 점유 대안 마련과 주민 수용성 제고를 위한 방안이 요구된다. 본 연구는 동해에 적합한 해상풍력발전단지와 연계한 수산자원 공존모델의 차별방안을 제시하였다. 동해는 부유식 해상풍력 발전단지 조성의 최적지로 단지 내 공유수면을 활용하여 외해양식에 적합한 고부가가치 어종인 참다랑어를 양식함으로써 에너지 생산, 수산자원 개발, 관광산업화를 통한 이익 창출로 경제적 효과 발생을 예측하였다. 또한, 운영관리 기술 공유 등으로 예산 감축, 스마트 관리 추진과 어민소득 증대 가능성을 확인하였다.

Response Analysis of MW-Class Floating Offshore Wind Power System using International Standard IEC61400-3-2

  • Yu, Youngjae;Shin, Hyunkyoung
    • 한국해양공학회지
    • /
    • 제34권6호
    • /
    • pp.454-460
    • /
    • 2020
  • In 2019, the Korean government announced the 3rd Basic Plan for Energy, which included expanding the rate of renewable energy generation by 30-40% by 2040. Hence, offshore wind power generation, which is relatively easy to construct in large areas, should be considered. The East Sea coast of Korea is a sea area where the depth reaches 50 m, which is deeper than the west coast, even though it is only 2.5 km away from the coastline. Therefore, for offshore wind power projects on the East Sea coast, a floating offshore wind power should be considered instead of a fixed one. In this study, a response analysis was performed by applying the analytical conditions of IEC61400-3-2 for the design of floating offshore wind power generation systems. In the newly revised IEC61400-3-2 international standard, design load cases to be considered in floating offshore wind power systems are specified. The upper structure applied to the numerical analysis was a 5-MW-class wind generator developed by the National Renewable Energy Laboratory (NREL), and the marine environment conditions required for the analysis were based on the Ulsan Meteorological Buoy data from the Korea Meteorological Administration. The FAST v8 developed by NREL was used in the coupled analysis. From the simulation, the maximum response of the six degrees-of-freedom motion and the maximum load response of the joint part were compared. Additionally, redundancy was verified under abnormal conditions. The results indicate that the platform has a maximum displacement radius of approximately 40 m under an extreme sea state, and when one mooring line is broken, this distance increased to approximately 565 m. In conclusion, redundancy should be verified to determine the design of floating offshore wind farms or the arrangement of mooring systems.

K-RE100 이행에 필요한 국내해상풍력단지 누적 설치량 전망 연구 (Prospects of Cumulative Installed Power Capacity of Domestic Offshore Wind Projects for K-RE100)

  • 강홍구;김병하;김헌조;양창조;정해창
    • 신재생에너지
    • /
    • 제20권2호
    • /
    • pp.44-54
    • /
    • 2024
  • The objective of this study was to contribute to domestic offshore wind farms by reasonably predicting the expected completion time and installed power generation capacity of offshore wind projects in South Korea. Offshore wind power is drastically regarded as a core tool for clean energy transition and industrial decarbonization in the fight against the climate crisis globally. Especially in South Korea offshore wind power is the main tool in partaking in RE100 and K-RE100, and the Korean government aims to install 14.9 GW of offshore wind farms by 2030. However, this seems to have been significantly delayed due to the complex process of obtaining permits for offshore wind power in Korea. Thus, a reasonable prediction of power generation and a timeline for the final construction are imperative. To establish the delay time for permit licenses, classified location factors were included into site analysis. These factors comprised reviews of transmission and military operability, environmental impact assessment, maritime traffic safety examination, wind resource assessment and an analysis of current offshore wind projects. According to the analysis, the majority of offshore wind projects currently being developed in Korea are predicted to be delayed by 3-5 years as they are among the criteria included in key discussion points for obtaining permits. The cumulative installed power capacity and annual power generation after construction are expected to be 37 GW and 97 TWh respectively.

해상풍력발전의 에너지단가(COE)절감 시나리오 연구 (Study on Cost of Energy(COE) Reduction Scenario of Korean Offshore Wind Power)

  • 성진기;이종훈;강금석;이태진
    • 전기학회논문지
    • /
    • 제62권11호
    • /
    • pp.1520-1527
    • /
    • 2013
  • The purpose of this study is to derive COE reduction targets of offshore wind power in Korea. In addition, innovation factors for achieving the COE reduction targets were derived. Also the COE reduction targets of offshore wind power was to improve that national policy, technology, industry and improving regulations would like to help. The results of this study has been created based on the various assumptions, scenarios and experts' discussions. Currently, offshore wind power generation price is 229.72won/kWh in 2012. According to the study, COE of offshore wind power has been proposed 88.8won/kWh at third scenario by 2030. This result has shown competitiveness with fossil fuel power generation.

해상 풍력발전단지 조성에 따른 레이더 전파간섭 저감 기술동향 (Technical Trend of Radar Radio Interference Reduction Relating to Construction of the Offshore Wind Farm)

  • 김영달;정윤미;이대동
    • 한국전기전자재료학회논문지
    • /
    • 제27권4호
    • /
    • pp.250-256
    • /
    • 2014
  • The wind power generation is an eco-friendly clean energy that produces almost zero $CO_2$ emission, and has a good economic feasibility. As for the location, the installation of large turbines and construction of large-scale wind farm is easier on the offshore than on the land. In Korea, it is inevitable to generate offshore wind power through the offshore wind farm, and the radio interference of larger wind power generators and offshore wind power farm to broadcasting, communication and radars is becoming a core issue for constructing the offshore wind farm. In this study, the wind power generation status and rotor blade technology trend were presented, along with the technical trend of radar radio interference reduction relating to construction of the offshore wind farm.

해상풍력 발전사업의 합리적 절차를 위한 제도개선 방안 : 인허가를 중심으로 (System Improvement Measures for Rational Procedures of Offshore Wind Power Generation Projects : Focusing on Permits)

  • 강석규;문정갑;조문관
    • 수산경영론집
    • /
    • 제54권2호
    • /
    • pp.59-76
    • /
    • 2023
  • This study is to propose ways to improve the system for rational procedures for offshore wind power generation projects. The results of this study are summarized as follows. In order to quickly distribute and develop offshore wind power projects, the permitting period should be shortened through special laws, the government actively intervenes to support the formation and operation of privat-public councils to ensure residents' acceptance. In this way, it can be competitive in the future energy market. Above all, a special law (proposal) related to offshore wind power currently pending in the National Assembly should be passed as soon as possible. Finally, the government and local governments that manage public waters should provide active administrative support based on system improvement measures in consideration of these permits, and the project's main body should minimize damage to the marine environment and ecosystem. Through these subject-specific roles, offshore wind power generation will be able to reduce carbon emissions and help establish a sustainable energy production system.

해상풍력 발전사업에 따른 어업피해조사 문제점 및 개선방안에 대한 연구 (A Study on the Problems and Improvement measures of Investigation of Fishing Damages Caused by Offshore Wind Power Development)

  • 남윤석;추현기;류거현
    • 수산경영론집
    • /
    • 제54권2호
    • /
    • pp.91-107
    • /
    • 2023
  • Offshore wind power development has been promoted in countries around the world to cope with global warming. Despite its many advantages, offshore wind power affects the marine environment during construction and operation. As a result, the reduction of fishing areas, changes in the habitat of marine animals, damage to fishing gear, and impeding the safety of fishing activities are occurring. If the offshore wind power generation project is carried out, a fishing damage investigation is nescssary. There are only four fishing damage investigations related to offshore wind power, which are being conducted similarly to the existing fishing damage investigation related to offshore construction. Therefore, this study reviewed and analyzed the report on fisheries damage investigation related to offshore wind power conducted in Korea and suggested problems and improvement measures accordingly.

파력-해상풍력 복합발전을 위한 대형 반잠수식 플랫폼의 개념설계 (Conceptual Design of Large Semi-submersible Platform for Wave-Offshore Wind Hybrid Power Generation)

  • 김경환;이강수;손정민;박세완;최종수;홍기용
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제18권3호
    • /
    • pp.223-232
    • /
    • 2015
  • 본 연구에서는 부유식 파력-해상풍력 연계형 발전시스템의 기반구조물 개념설계에 대한 내용을 다루고 있다. 세계적으로 해양 신재생에너지에 대한 관심이 커져가고 있다. 파력과 해상풍력은 다른 해양에너지원과 더불어 주요 관심이 되는 에너지원으로서 발전적지가 대체로 일치한다는 특징이 있다. 따라서 파력과 해상풍력을 복합하여 발전하는 시스템은 경제적으로 많은 이점이 있고 이미 여러 나라에서 파력-해상풍력 복합발전 시스템을 개발하고 있다. 이에 따라 우리나라에서도 10MW급의 파력-해상풍력 복합발전 시스템을 개발하기 위한 연구가 수행되었다. 본 연구에서는 다수 풍력발전기와 파력발전기의 배치를 고려하여 반잠수식 구조물이 설계되었다. 또한 설치해역의 환경을 고려하여 계류시스템과 파워케이블이 설계되었다. 본 논문에서는 이러한 복합발전 플랫폼의 개념설계 결과를 제시하고 다양한 발전시스템의 배치를 고려한 설계상의 어려움을 토의하고 설계 방법을 제시한다.

한국의 해상풍력산업 발전전략 고찰 (Contemplation of Korean Offshore Wind Industry Development)

  • 김종화
    • 풍력에너지저널
    • /
    • 제15권1호
    • /
    • pp.5-10
    • /
    • 2024
  • Offshore wind power generation has significant advantages, including enhanced energy security and job creation. However, despite these benefits, South Korea has not fully utilized its potential in this sector. In contrast, offshore wind power industry development in Europe has been driven by government leadership. Drawing from this experience, South Korea also needs to relax regulations, strengthen necessary infrastructure, and enhance financial support systems to activate the offshore wind power industry. For this, sustained government leadership is absolutely essential. Without addressing the capacity issues in the power grid, we cannot expect offshore wind power generation to succeed. To address grid issues, we propose the enactment of a special law called the "Special Act on Grid Expansion." Considering KEPCO's financial situation, private investment should be encouraged for grid construction. The role of developers is crucial for the successful development and operation of offshore wind power. They manage risks throughout various stages, from site acquisition to construction and operation, which have a significant impact on the success or failure of projects. Since domestic developers currently lack experience in offshore wind power, a cooperative strategy that leverages the experience and technology of advanced countries is necessary. Energy issues should be recognized as important tasks beyond mere political ideologies, as they are crucial for the survival of the nation and its development. It is essential to form a public consensus and implement ways for residents to coexist with offshore wind power, along with the conservation of marine ecosystems and effective communication with stakeholders. Expansion of the offshore wind power industry requires support in various areas, including financial and tax incentives, technology research investment, and workforce development. In particular, achieving carbon neutrality by 2050 necessitates the activation of offshore wind power alongside efforts by major corporations to transition to renewable energy. South Korea, surrounded by the sea, holds significant offshore wind power potential, and it is our responsibility to harness it as a sustainable energy source for future generations. To activate the offshore wind power market, we need to provide financial and tax support, develop infrastructure and research, and foster a skilled workforce. As major corporations transition to renewable energy to achieve carbon neutrality by 2050, offshore wind power must play a significant role. It is our responsibility to fully utilize South Korea's potential and make offshore wind power a new driver of growth.