• Title/Summary/Keyword: Offshore field

Search Result 324, Processing Time 0.029 seconds

Numerical Study based on Three-Dimensional Potential Flow in Time-Domain for Effect of Wave Field Change due to Coastal Structure on Hydrodynamic Performance of OWC Wave Energy Converter (연안 구조물로 인한 파동장의 변화가 진동수주 파력발전장치 유체성능에 미치는 영향에 관한 3차원 시간영역 포텐셜 유동 기반의 수치 연구)

  • Kim, J.S.;Nam, B.W.;Park, S.;Kim, K.H.;Shin, S.H.;Hong, K.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.150-152
    • /
    • 2019
  • In this study, the effects of the wave field changes due to the coastal structure on the hydrodynamic performance of the OWC wave energy, converter are analyzed using a three-dimensional numerical wave tank technique (NWT). The OWC device is simulated numerically by introducing a linear pressure drop model, considering the coupling effect between the turbine and the OWC chamber in the time domain. The flow distribution around the chamber is different due to the change of reflection characteristics depending on the consideration of the breakwater model. The wave energy captured from the breakwater is spatially distributed on the plane of the front of the breakwater, and the converted pneumatic power increased when concentrated in front of the chamber. The change of the standing wave distribution is repeated according to the relationship between the incident wavelength and the length of the breakwater, and the difference in energy conversion performance of the OWC was confirmed.

  • PDF

Analysis of Lateral Behavior of Steel Pile embedded in Basalt (암반에 근입된 강관말뚝의 수평방향 지지거동 연구)

  • Kim, Khi-Woong;Park, Jeong-Jun;Kim, Jin-Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Recently, offshore wind farms are increasingly expected, because there are huge resource and large site in offshore. Jeju island has optimum condition for constructing a wind energy farm. Unlike the mainland, Jeju island has stratified structure distribution between rock layers sediments due to volcanic activation. In these case, it can be occur engineering problems in whole structures as well as the safety of foundation as the thickness and distribution of sediment under top rock layer can not support sufficiently the structure. In this study, field lateral load test of the pile for analyzing lateral behavior of the offshore wind turbine which is embedded in basalt. After calculating the subgrade resistance and the horizontal deflection from the measured strain to derive p-y curve from the lateral load test results, the subgrade resistance amplifies the error in the process of differentiation and the error of piecewise polynomial curve fitting is the smallest. In order to calculate the horizontal deflection from the measured strain, the six-order polynomial was used.

Analytical Discussion on Stochastic Hydrodynamic Modeling of Support Structure of HAWAII WTG Offshore Wind Turbine

  • Abaiee, M.M.;Ahmadi, A.;Ketabdari, M.J.
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • Floating structure such as tension leg platform, semi-submersible and spar are widely used in field of oil exploration and renewable energy system. All of these structures have the base cylinder support structure which have effective rule in overall dynamic of response. So the accurate and reliable modeling is needed for optimum design and understanding the physical background of these systems. The aim of this article is an analytical discussion on stochastic modeling of floating cylinder based support structure but an applicable one. Due to this a mathematical mass-damper-spring system of a floating cylinder of HAWAII WTG offshore wind as an applicable and innovative system is adopted to model a coupled degrees using random vibration in analytical way. A fully develop spectrum is adopted to solve the stochastic spectrum analytically by a proper approximation. Some acceptable assumption is adopted. The simplified but analytical and innovative hydrodynamic analysis of this study not only will help researcher to concentrate more physically on hydrodynamic analysis of floating structures but also can be useful for any quick, simplified and closed form analysis of a complicated problem in offshore engineering.

Depositional Environment and Distribution of Heavy Metal off the Shihwa Dam

  • Oh, Jae-Kyung
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.120-127
    • /
    • 1997
  • Depositional environment off the Shihwa Dam has been studied to investigate the change of sedimentation process and the pollution. In order to understand how the sediments are distributed, polluted and modified, depositional factors have been analyzed and compared with the previous data. Study area, located off the Shihwa Dam, was surveyed to collect 25 bottom samples and 2 cores in 1996 and echo-sounding in 1997. These sediments were analyzed for the study of the global characteristics of sediment such as grain size and organic matter. Among these samples, the selected twenty surface sediments were analyzed for the comparison with their contents of metallic elements (Al, Mn, Fe, V, Cr, Co, Ni, Cu, Zn, Cd, Pb, As). According to field and lab analysis of sediments, three sedimentological zones have been generally identified around study area; near the dam (sandy Silt), near the dike (Sand) and offshore (silty Sand) zones. Textural parameters show that the content of silt and clay is dominant near the dam excepting the dike zone of LNG Storage Base and offshore (Palmido). The total concentration of Mn, Ni, Fe, Zn and Cd in bulk sediments was increased after the construction of the dam, while the content of Mn and Cr were higher near tidal channel than in the offshore area. Meanwhile, the annual increasing pattern of some heavy metal has appeared in this area. Based on this primary study, modification of the depositional environment may be caused by the construction of the dam and LNG Storage Base. Additionally, environmental evaluation on organic/inorganic factors has been suggested for interpreting environmental changes caused by coastal development in the nearshore such as the Shihwa coastal area.

  • PDF

Vibration control of offshore wind turbine using RSM and PSO-optimized Stockbridge damper under the earthquakes

  • Islam, Mohammad S.;Do, Jeongyun;Kim, Dookie
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.207-223
    • /
    • 2018
  • In this inquisition, a passive damper namely Stockbridge Damper (SBD) has been introduced to the field of vibration control of Offshore Wind Turbine (OWT) to reduce the earthquake excitations. The dynamic responses of the structure have been analyzed for three recorded earthquakes and the responses have been assessed. To find an optimum SBD, the parameters of damper have been optimized using Response Surface Methodology (RSM) based on Box-Behnken Design (BBD) and Particle Swarm Optimization (PSO). The influence of the design variables of SBD such as the diameter of messenger cable, the length of messenger cable and logarithmic decrement of the damping has been investigated through response variables such as maximum displacement, RMS displacement and frequency amplitude of structure under an artificially generated white noise. After that, the structure with optimized and non-optimized damper has been analyzed with under the same earthquakes. Moreover, the comparative results show that the structure with optimized damper is 11.78%, 18.71%, 11.6% and 7.77%, 7.01%, 10.23% more effective than the structure with non-optimized damper with respect to the displacement and frequency response under the earthquakes. The results show that the SBD can obviously affect the characteristics of the vibration of the OWT and RSM based on BBD and PSO approach can provide an optimum damper.

A Development of the Knowledge-Based CAD Interface Systems in Offshore Industry-The Interface Between Material Control System and CAD System (해양구조물산업에서의 지식기반 CAD 인터페이스 시스템 구축-자재관리시스템과 CAD시스템 간의 인터페이스)

  • Hwang, Sung-Ryoung;Kim, Jae-Gyun;Jung, Kui-Hun;Yang, Young-Tae
    • IE interfaces
    • /
    • v.12 no.2
    • /
    • pp.319-328
    • /
    • 1999
  • Today, offshore design field is concerned with system integration such as CIM(Computer Integrated Manufacturing), PDMS(Product Data Management System) and EDMS(Engineering Data Management System) in order to cope with the change of engineering specification as owner's requirements during construction stage of the project. This paper deals with the case study that describes about the efficient interface between material control system and 3D CAD system to support the design process in offshore industry using design rules involved the designer's knowledge. In this paper, we constructed an information system, called knowledge-based CAD interface systems, which is composed material code management system and 3D specification generator which automatically creates 3D catalogue anti specification by linking the material code, called short code, and the specification components of the 3D CAD system. As a result of the construction, it is possible to maintain consistency of the design process, and through reduction of the design processing time and improvement of the design process, competitiveness is improved.

  • PDF

Dynamic assessment of the seismic isolation influence for various aircraft impact loads on the CPR1000 containment

  • Mei, Runyu;Li, Jianbo;Lin, Gao;Zhu, Xiuyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1387-1401
    • /
    • 2018
  • An aircraft impact (AI) on a nuclear power plant (NPP) is considered to be a beyond-design-basis event that draws considerable attention in the nuclear field. As some NPPs have already adopted the seismic isolation technology, and there are relevant standards to guide the application of this technology in future NPPs, a new challenge is that nuclear power engineers have to determine a reasonable method for performing AI analysis of base-isolated NPPs. Hence, dynamic influences of the seismic isolation on the vibration and structural damage characteristics of the base-isolated CPR1000 containment are studied under various aircraft loads. Unlike the seismic case, the impact energy of AI is directly impacting on the superstructure. Under the coupled influence of the seismic isolation and the various AI load, the flexible isolation layer weakens the constraint function of the foundation on the superstructure, the results show that the seismic isolation bearings will produce a large horizontal deformation if the AI load is large enough, the acceleration response at the base-mat will also be significantly affected by the different horizontal stiffness of the isolation bearing. These concerns require consideration during the design of the seismic isolation system.

A Study on the Deformation of O.D 245mm Off-shore Plant Pipe by Induction Bending (고주파 벤딩을 통한 직경 245mm 해양플랜트 배관의 변형에 관한 연구)

  • Joo, Yi-Hwan;Kim, Namyong;Kim, Dong-Seon;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.72-78
    • /
    • 2022
  • Bending using high-frequency induction heating is used to bend pipes and sections, and is currently widely applied in industrial fields such as power generation facilities, ships, onshore plants, and offshore plants. The purpose of this study is to study the manufacturing process and design technology of high-frequency bending of pipe to make the best pipe design arrangement. Although various studies are being conducted in the field of high-frequency bending, more research is needed on high-frequency bending of pipes for ship building and offshore plants. The purpose of this study is to review the feasibility of production design using 3D model tool of S3D and AM(PDMS), and to review and improve bending thickness reduction, reduction rate, and roundness.

Study on the Reconstruction of Pressure Field in Sloshing Simulation Using Super-Resolution Convolutional Neural Network (심층학습 기반 초해상화 기법을 이용한 슬로싱 압력장 복원에 관한 연구)

  • Kim, Hyo Ju;Yang, Donghun;Park, Jung Yoon;Hwang, Myunggwon;Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.72-79
    • /
    • 2022
  • Deep-learning-based Super-Resolution (SR) methods were evaluated to reconstruct pressure fields with a high resolution from low-resolution images taken from a coarse grid simulation. In addition to a canonical SRCNN(super-resolution convolutional neural network) model, two modified models from SRCNN, adding an activation function (ReLU or Sigmoid function) to the output layer, were considered in the present study. High resolution images obtained by three models were more vivid and reliable qualitatively, compared with a conventional super-resolution method of bicubic interpolation. A quantitative comparison of statistical similarity showed that SRCNN model with Sigmoid function achieved best performance with less dependency on original resolution of input images.