DOI QR코드

DOI QR Code

Analysis of Lateral Behavior of Steel Pile embedded in Basalt

암반에 근입된 강관말뚝의 수평방향 지지거동 연구

  • Received : 2016.01.12
  • Accepted : 2016.03.04
  • Published : 2016.03.30

Abstract

Recently, offshore wind farms are increasingly expected, because there are huge resource and large site in offshore. Jeju island has optimum condition for constructing a wind energy farm. Unlike the mainland, Jeju island has stratified structure distribution between rock layers sediments due to volcanic activation. In these case, it can be occur engineering problems in whole structures as well as the safety of foundation as the thickness and distribution of sediment under top rock layer can not support sufficiently the structure. In this study, field lateral load test of the pile for analyzing lateral behavior of the offshore wind turbine which is embedded in basalt. After calculating the subgrade resistance and the horizontal deflection from the measured strain to derive p-y curve from the lateral load test results, the subgrade resistance amplifies the error in the process of differentiation and the error of piecewise polynomial curve fitting is the smallest. In order to calculate the horizontal deflection from the measured strain, the six-order polynomial was used.

최근 해상풍력발전 단지 조성은 많은 양의 에너지를 창출할 수 있어 그 기대는 점차적으로 증가하고 있다. 특히 제주도는 풍황이 우수하여 해상풍력발전 시스템 운영을 위한 최적의 대상지이기는 하나, 화산활동에 의해 형성된 지형으로 육지부와 달리 현무암층 사이에 연약층인 화산쇄설물 및 공동이 불규칙하게 발달된 층상구조로 이루어져 있다. 이에 본 연구에서는 제주현무암의 p-y 곡선을 얻기 위한 수평재하시험을 실시하였다. 말뚝 수평재하시험중에 측정한 변형률 데이터로부터 p-y 곡선을 유도하기 위하여 수평변위(y)는 high order polynomial curve fitting 기법을 적용하고, 지반반력(p)은 piecewise cubic polynomial curve fitting 기법을 추천한다. 이는 지반반력을 계산하기 위하여 미분하는 과정에서 발생하는 에러를 최소화 할 수 있으므로 역해석을 통한 말뚝두부에서 하중-변위를 예측할 때 에러가 가장 작게 발생한다.

Keywords

References

  1. Dunnavant, T. W. (1986), Experimental and Analytical Investigation of the Behavior of Single Piles in Overconsolidated Clay Subjected to Cyclic Lateral Loads, Ph.D. Dissertation of University of Houston, Texas.
  2. IEC (2009), International Standard-part 3: design requirements for offshore wind turbines, Project IEC 61400-3, Geneva, Switzerland.
  3. King, G. J (1994), "The interpretation of data from test on laterally loaded piles", Proceedings of the International Conference: Centrifuge 94, Singapore, pp. 485-490.
  4. Matlock, H. and Ripperger, E. A. (1956), "Procedures and Instrumentation for Tests on a Laterally Loaded Pile", Proceedings of Eighth Texas Conference on Soil Mechanics and Foundation Engineering, Austin, Texas.
  5. Mezazigh, S. and Levacher, D. (1998), "Laterally Loaded Piles in Sand: Slope Effect on p-y Reaction Curves", Canadian Geotechnical Journal, Vol. 35, No. 3, pp. 433-441. https://doi.org/10.1139/t98-016
  6. Reese, L. C., and Welch, R. C. (1975), "Lateral loadings of deep foundations in stiff clay", Journal of Geotechnical Engineering, ASCE, 101(7), pp. 633-649.
  7. Wilson, D. (1998), Soil-pile-superstructure interaction in liquefying sand and soft clay, Ph. D. Dissertation, University of California at Davis.
  8. Yang, K.H., Huh, J. C. and Park, J.J. (2015), "A Study on p-y Curves with Pressuremeter Tests in Jeju Basalt Rock", Journal of Korean Geosynthetics Society, Vol. 14, No. 4, pp. 129-137. https://doi.org/10.12814/jkgss.2015.14.4.129