• Title/Summary/Keyword: Offshore Wind Power

Search Result 315, Processing Time 0.028 seconds

Technical Trend of Radar Radio Interference Reduction Relating to Construction of the Offshore Wind Farm (해상 풍력발전단지 조성에 따른 레이더 전파간섭 저감 기술동향)

  • Kim, Young-Dal;Jeong, Yun-Mi;Lee, Dae-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.250-256
    • /
    • 2014
  • The wind power generation is an eco-friendly clean energy that produces almost zero $CO_2$ emission, and has a good economic feasibility. As for the location, the installation of large turbines and construction of large-scale wind farm is easier on the offshore than on the land. In Korea, it is inevitable to generate offshore wind power through the offshore wind farm, and the radio interference of larger wind power generators and offshore wind power farm to broadcasting, communication and radars is becoming a core issue for constructing the offshore wind farm. In this study, the wind power generation status and rotor blade technology trend were presented, along with the technical trend of radar radio interference reduction relating to construction of the offshore wind farm.

Study on Present Status and Future Direction of Korean Offshore Wind Power (한국의 해상풍력 현황과 발전방향에 관한 연구)

  • Sung, Jin Ki;Lee, Tae Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.312-321
    • /
    • 2013
  • In this study, we review the status of Southwest sea 2.5GW offshore wind project and expected various problems. And we suggest government policies for offshore wind industrialization. Especially, we would like to mention the necessity of offshore wind development in order to diversify power sources and guarantee energy security in Korea. And we would like to mention necessity and direction to make offshore wind into growth engine industry thorough fusion between industries and energization for the existing industry such as civil, shipbuilding, steel, etc. that was headed into downturn.

Analysis on Economic Feasibility of Offshore wind power (국내 풍력발전의 경제성 분석에 관한 연구)

  • Shin, Youngeun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.149.2-149.2
    • /
    • 2011
  • This paper conducted an analysis of economic effects of offshore wind power in Korea with benefit/cost analysis. The existing feed-on tariff, which was too low to support wind power development, was recently replaced with a Renewable Portfolio Standard(RPS), effective from 2012. According to the new regulatory policy, The Korean government has announced a strategy to draw investments worth for offshore wind farms with a total capacity of 2.5 GW over the next eight years, which is expected the change of cost and benefit. After overview the offshore wind power development status, The effects on cost can be divided by economic, environmental and social factors. Each factor will be calculated and combined by both evaluating index and using Quantification methods. At the end, the implication for the evaluation of feasibility of offshore wind power of Korea will be done.

  • PDF

A Study on the Building of Tuna Farming in Floating Offshore Wind Power Generation Field at East Sea (동해 부유식 해상풍력발전단지 내 참다랑어 양식장 조성에 관한 연구)

  • Choi, Gun Hwan;Kim, Mi Jeong;Jang, Ki Ho;Kim, Hyo Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.179-186
    • /
    • 2021
  • We need measures that can come up with alternative about fishery living zone and enhance local acceptance for responding to the increase in the proportion of renewable energy production and construction of 12GW Offshore wind power according to Korea's Renewable Energy 3020 initiative and Korean-version New Deal. In this study, We suggest that differentiation plans of co-location model in connection with offshore wind power generation suitable for the East Sea. The East Sea is an optimal site for building of a floating offshore wind power generation(FOWPG) field. It is expected that economic effects like energy production, aquatic resource development and tourism industrialization by farming bluefin tuna which is high valued fish and suitable for offshore aquaculture on public waters in FOWPG field. And we can confirm that budget reduction, smart management by sharing operation management technology and increase in fishermen income.

Economic analysis of a 22.9 kV HTS power cable and conventional AC power cable for an offshore wind farm connections

  • Jung, Ga-Eun;Dinh, Minh-Chau;Sung, Hae-Jin;Park, Minwon;Yu, In-Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.60-64
    • /
    • 2018
  • As the offshore wind farms increase, interest in the efficient power system configuration of submarine cables is increasing. Currently, transmission system of the offshore wind farm uses almost AC system. High temperature superconducting (HTS) power cable of the high capacity has long been considered as an enabling technology for power transmission. The HTS cable is a feasible way to increase the transmission capacity of electric power and to provide a substantial reduction in transmission losses and a resultant effect of low CO2 emission. The HTS cable reduces its size and laying sectional area in comparison with a conventional XLPE or OF cable. This is an advantage to reduce its construction cost. In this paper, we discuss the economic feasibility of the 22.9 kV HTS power cable and the conventional AC power cables for an offshore wind farm connections. The 22.9 kV HTS power cable cost for the offshore wind farm connections was calculated based on the capital expenditure and operating expense. The economic feasibility of the HTS power cable and the AC power cables were compared for the offshore wind farm connections. In the case of the offshore wind farm with a capacity of 100 MW and a distance of 3 km to the coast, cost of the 22.9 kV HTS power cable for the offshore wind farm connections was higher than 22.9 kV AC power cable and lower than 70 kV AC power transmission cable.

Conceptual Design of Self-Weighing Support Structure for Offshore Wind Turbines and Self-Floating Field Test (자중조절형 해상풍력 지지구조 개념설계 및 부유이송 현장시험)

  • Kim, Seoktae;Kim, Donghyun;Kang, Keumseok;Jung, Minuk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.631-638
    • /
    • 2016
  • Offshore wind power can be an alternative for onshore wind power which suffers from not only civil complaints regarding to landscape damage and noise but also wind power siting due to lack of onshore site candidates. Compared to onshore wind power, offshore wind power is free from these problems considering that generally the sites are far enough from the coast. And more electricity is generated in offshore wind turbines due to abundant offshore wind resources. However high installation costs of offshore turbines could deteriorate the economical efficiency. The main cause of the high installation costs comes from a long-term lease of the heavy marine equipment and the consequential high rental cost. In this paper, the conceptual design of the support structure for offshore wind turbines will be suggested for the installation of them with less heavy marine equipment.

Optimal Design of Power Grid and Location of Offshore Substation for Offshore Wind Power Plant (해상풍력발전단지의 전력망과 해상변전소 위치에 대한 최적 설계)

  • Moon, Won-Sik;Won, Jong-Nam;Huh, Jae-Sun;Jo, Ara;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.984-991
    • /
    • 2015
  • This paper presents the methodology for optimal design of power grid for offshore wind power plant (OWPP) and optimum location of offshore substation. The proposed optimization process is based on a genetic algorithm, where the objective cost model is composed of investment, power loss, repair, and reliability cost using the net present value during the whole OWPP life cycle. A probability wind power output is modeled to reflect the characteristics of a wind power plant that produces electricity through wind and to calculate the reliability cost called expected energy not supplied. The main objective is to find the minimum cost for grid connection topology by submarine cables which cannot cross each other. Cable crossing was set as a constraint in the optimization algorithm of grid topology of the wind power plant. On the basis of this method, a case study is conducted to validate the model by simulating a 100-MW OWF.

GIS Analysis on Siting Strategy of Offshore Wind Farm (해상풍력단지 입지전략 GIS 분석)

  • Song, Kyu-Bong;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.460-462
    • /
    • 2009
  • This study has analyzed the scale, location, resource potential and feasibility of offshore wind farm scientifically and systematically based on the national wind map and GIS (Geographic Information System). For long-term wind power development, this study pursues siting strategy building, selection of target area and deciding development priority as well as the presenting a basis for assessment that are necessary for policy decision making by making theme layers under GIS environment. According to the analysis after organizing technological development by stages, even if only the most suitable sites are developed among the area of offshore wind farm candidates that can be developed under the current technological standard, it has been evaluated as being able to develop about 3 times of the wind power dissemination target until 2012. It is expected that about 5% of territorial water area can be developed in a short-term future while the southern offshore area possessing relatively favorable wind resource than the western offshore has been identified as the most feasible site. While about 23% of territorial water area has been classified as potential area for offshore wind farm development in a long-term future, even Jeju Island and offshore of Ulsan possessing excellent wind resource have been analyzed as feasible sites. The feasibility assessment of offshore wind farm development established by this study is expected to assist national strategy building for accomplishing the wind power dissemination target.

  • PDF

Economic Assessments of LFAC and HVDC Transmissions for Large Offshore Wind Farms

  • Park, Taesik;Kwak, Nohong;Moon, Chaeju;Cha, Seungtae;Kwon, Seongchul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.73-77
    • /
    • 2015
  • Offshore wind farms extend a distance from an onshore grid to increase their generating power, but long distance and high power transmissions raise a lot of cost challenges. LFAC (Low Frequency AC) transmission is a new promising technology in high power and low cost power transmission fields against HVDC (High Voltage DC) and HVAC (High Voltage AC) transmissions. This paper presents an economic comparison of LFAC and HVDC transmissions for large offshore wind farms. The economic assessments of two different transmission technologies are analyzed and compared in terms of wind farm capacities (600 MW and 900 MW) and distances (from 25 km to 100 km) from the onshore grid. Based on this comparison, the economic feasibility of LFAC is verified as a most economical solution for remote offshore wind farms.

Installation of Meteorological Mast for the Test Bed of Offshore Wind Power (서해 100MW 해상풍력 실증단지 기상타워 구축사례)

  • Ryu, Moosung;Kang, Keumseok;Kim, Jiyoung;Lee, Junshin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.55.2-55.2
    • /
    • 2011
  • The final site of offshore wind power plant should be decided by comprehensive examination of various conditions such as wind resource, sea depth, geology, grid connection, social circumstance and environmental issue. Wind condition is typically regarded as the most important factor because wind energy increases in proportion to wind velocity and it directly relates to the amount of power output, efficiency of power plant and profitability. Advanced countries in the offshore wind power sector such as Denmark, UK and Germany, they are analyzing wind resource accurately by installing the meteorological mast in the ocean in order to get the optimal type of wind turbine and maximum generation efficiency. Also, it is made much of designing offshore power plant on the basis of actual measurement by met-mast and those wind farms have a chance to get the loan with reduced interest rate in project financing. In Korea, the HEMOSU-1 is installed in the ocean around Wido island to analyze wind resource of test bed of 100MW offshore wind power on october last year. This paper deals with the design and construction procedure of the first met-mast in Korea and also shows the site characteristics of test bed. Therefore, this paper will give useful information to local governments and private business sector who are trying to construct offshore wind farm and it can also be a good reference for the following projects of meteorological mast in near future.

  • PDF