• Title/Summary/Keyword: Offshore Tubular

Search Result 58, Processing Time 0.019 seconds

Local joint flexibility equations for Y-T and K-type tubular joints

  • Asgarian, Behrouz;Mokarram, Vahid;Alanjari, Pejman
    • Ocean Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.151-167
    • /
    • 2014
  • It is common that analyses of offshore platforms being carried out with the assumption of rigid tubular joints. However, many researches have concluded that it is necessary that local joint flexibility (LJF) of tubular joints should be taken into account. Meanwhile, advanced analysis of old offshore platforms considering local joint flexibility leads to more accurate results. This paper presents an extensive finite-element (FE) based study on the flexibility of uni-planner multi-brace tubular Y-T and K-joints commonly found in offshore platforms. A wide range of geometric parameters of Y-T and K-joints in offshore practice is covered to generate reliable parametric equations for flexibility matrices. The formulas are obtained by non-linear regression analyses on the database. The proposed equations are verified against existing analytical and experimental formulations. The equations can be used reliably in global analyses of offshore structures to account for the LJF effects on overall behavior of the structure.

Effects of geometrical parameters on the degree of bending in two-planar tubular DYT-joints of offshore jacket structures

  • Hamid Ahmadi;Mahdi Ghorbani
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.97-121
    • /
    • 2023
  • Through-the-thickness stress distribution in a tubular member has a profound effect on the fatigue behavior of tubular joints commonly found in steel offshore structures. This stress distribution can be characterized by the degree of bending (DoB). Although multi-planar joints are an intrinsic feature of offshore tubular structures and the multi-planarity usually has a considerable effect on the DoB values at the brace-to-chord intersection, few investigations have been reported on the DoB in multi-planar joints due to the complexity of the problem and high cost involved. In the present research, data extracted from the stress analysis of 243 finite element (FE) models, verified based on available parametric equations, was used to study the effects of geometrical parameters on the DoB values in two-planar tubular DYT-joints. Parametric FE study was followed by a set of nonlinear regression analyses to develop six new DoB parametric equations for the fatigue analysis and design of axially loaded two-planar DYT-joints.

Structural Characteristics of Damaged Offshore Tubular Members

  • Cho, Sang-Rai;Kwon, Jong-Sig;Kwak, Dong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.1-7
    • /
    • 2010
  • Over the past few decades various experimental and theoretical investigations have been performed on offshore tubular members with regard to damage resistance and residual strength. Analysis of damaged tubular members requires a three-dimensional shell analysis for accurate results. Even though various commercial packages are available for this purpose, a beam-column analysis is preferred for offshore structural designs. In this paper, empirical equations are provided for a more accurate beam-column analysis of damaged tubes including the relationships between the lateral denting load and the depth of the dent, the rate of dent deepening due to increasing curvature and the longitudinal variation in the dent depth of damaged tubes. A design equation to predict the ultimate bending capacities of damaged offshore tubular members is also presented.

SCFs in offshore two-planar tubular TT-joints reinforced with internal ring stiffeners

  • Ahmadi, Hamid;Imani, Hossein
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • The majority of tubular joints commonly found in offshore jacket structures are multi-planar. Investigating the effect of loaded out-of-plane braces on the values of the stress concentration factor (SCF) in offshore tubular joints has been the objective of numerous research works. However, due to the diversity of joint types and loading conditions, a number of quite important cases still exist that have not been studied thoroughly. Among them are internally ring-stiffened two-planar TT-joints subjected to axial loading. In the present research, data extracted from the stress analysis of 243 finite element (FE) models, verified against available numerical and experimental data, was used to study the effects of geometrical parameters on the chord-side SCFs in two-planar tubular TT-joints reinforced with internal ring stiffeners subjected to two types of axial loading. Parametric FE study was followed by a set of nonlinear regression analyses to develop six new SCF parametric equations for the fatigue analysis and design of axially-loaded two-planar TT-joints reinforced with internal ring stiffeners.

Damage Effects on the Ultimate Strength of Offshore Tubular Members (해양구조물 원통부재의 최종강도에 대한 손상의 영향)

  • Paik, Jeom-Ki;Shin, Byung-Cheon
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.577-577
    • /
    • 1989
  • In this paper, a detail evaluation of ultimate strength of offshore unstiffened tubular members with bending and local denting damage which are subjected to combined axial force and bending moment and to component load is presented through theoretical and experimental approaches. Based upon the results obtained here, the damage effect on the ultimate strength of tubular member under combined loads and component load is investigated.

Damage Effects on the Ultimate Strength of Offshore Tubular Members (해양구조물 원통부재의 최종강도에 대한 손상의 영향)

  • Paik, Jeom-Ki;Shin, Byung-Cheon
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.77-86
    • /
    • 1989
  • In this paper, a detail evaluation of ultimate strength of offshore unstiffened tubular members with bending and local denting damage which are subjected to combined axial force and bending moment and to component load is presented through theoretical and experimental approaches. Based upon the results obtained here, the damage effect on the ultimate strength of tubular member under combined loads and component load is investigated.

  • PDF

Influence of end fixity on post-yield behaviors of a tubular member

  • Cho, Kyu Nam
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.557-568
    • /
    • 2002
  • For the evaluation of the capability of a tubular member of an offshore structure to absorb the collision energy, a simple method can be employed for the collision analysis without performing the detailed analysis. The most common simple method is the rigid-plastic method. However, in this method any characteristics for horizontal movement and rotation at the ends of the corresponding tubular member are not included. In a real structural system of an offshore structure, tubular members sustain a certain degree of elastic support from the adjacent structure. End fixity has influences in the behaviors of a tubular member. Three-dimensional FEM analysis can include the effect of end fixity fully, however in viewpoints of the inherent computational complexities of the 3-D approach, this is not the recommendable analysis at the initial design stage. In this paper, influence of end fixity on the behaviors of a tubular member is investigated, through a new approach and other approaches. A new analysis approach that includes the flexibility of the boundary points of the member is developed here. The flexibility at the ends of a tubular element is extracted using the rational reduction of the modeling characteristics. The property reduction is based on the static condensation of the related global stiffness matrix of a model to end nodal points of the tubular element. The load-displacement relation at the collision point of the tubular member with and without the end flexibility is obtained and compared. The new method lies between the rigid-plastic method and the 3-demensional analysis. It is self-evident that the rigid-plastic method gives high strengthening membrane effect of the member during global deformation, resulting in a steeper slope than the present method. On the while, full 3-D analysis gives less strengthening membrane effect on the member, resulting in a slow going load-displacement curve. Comparison of the load-displacement curves by the new approach with those by conventional methods gives the figures of the influence of end fixity on post-yielding behaviors of the relevant tubular member. One of the main contributions of this investigation is the development of an analytical rational procedure to figure out the post-yielding behaviors of a tubular member in offshore structures.

A Fundamental Study on the Lateral Impact Problems of Tubular Members (원통부재의 횡충돌에 관한 기초적 연구)

  • Lee Sang-Gab;Chung Young-Gu
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.234-241
    • /
    • 1995
  • Offshore structures are exposed to higher probability of collision with ship because of their limited mobility. In general, the consequence of the collision is reported to be relatively small and it is desirable to consider minor collisions in the design stage. It is important to have a comprehensive understanding of the dynamic responses of a tubular, their main member, under collision to design offshore structure against possible accidents. It is needed to estimate the probable extent of damage of a tubular, depth of dent, affected by the time history of impact load in ender to design a tubular strong enough for collision. In this paper, dynamic behaviors of a tubular due to the lateral impact are investigated through the numerical simulations with hydrocode DYNA3D, a three dimensional elasto-plastic large deformation impact contact problem analyzing program.

  • PDF

Axial Strength Evaluation for Tubular T-Joints with Internal Ring Stiffener (환보강재를 가진 T형 관이음부의 축방향 강도 평가)

  • 조현만;류연선;김정태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.269-276
    • /
    • 2001
  • Tubular structures are widely used for offshore platforms and truss type structures. In this paper, nonlinear finite element analysis is used to assess the static strength of stiffened tubular T-joints subjected to compressive brace loading. This joints was modelled with and without internal ring stiffener According to variation of ring geometries, the effect of ring stiffener for T-joints are investigated. Internal ring stiffener is found to be efficient improving ultimate strength of tubular joints. Relations of ring thickness and axial strength are observed considering geometric parameters of ring stiffeners.

  • PDF