• Title/Summary/Keyword: Offshore Plant

Search Result 403, Processing Time 0.026 seconds

A Study on Development of Gap Competency Matrix for Offshore Workforce -Focusing on the Job Transportation for Seafarers- (해양플랜트 인력양성을 위한 직무능력향상 매트릭스 개발에 관한 연구 -해기사의 직업전환을 중심-)

  • LEE, Jin-Woo;LEE, Chang-Hee
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.2
    • /
    • pp.407-416
    • /
    • 2016
  • The offshore plant industry has basically functioned with a rigid teamwork culture and many operations are managed by ship's crew, shifts and affiliates together. The marine sector of offshore plant has much similarity with ship's environment. So a person who had experienced on board will have advantages to work for offshore industry. But in spite of all that, only a few korean seafarers are able to join in the offshore industry due to lack of information about the offshore environment. This study analyze the employee's wage structure, nature of employment contract, requirements of job qualifications. Therefore, this study will assist for seafarers to set up how to get their work and also suggest to develop relevant offshore training courses by researching the gap competency matrix.

Development of Parametric Design Tool for Offshore Plant Cable Tray Using PML (프로그램 매크로언어를 이용한 해양 플랜트 케이블 트레이의 파라메트릭 설계 도구 개발)

  • Kim, Hyun-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.632-637
    • /
    • 2019
  • The cable tray design of an offshore plant production design is to optimally arrange the 3D modeling so that the cable can be installed without interfering with the structural members and various outfit equipment, and it is performed using a PDMS (Plant design management system), which is a 3D CAD system for an offshore plant layout. This study reviewed the development of PML (Programmable macro language) for a PDMS supporting offshore plant cable tray design and examined the efficiency compared to the existing method. Cable tray design PML developed in this paper enables fully parametric design using electrical outfit template library, allowing a rapid response to frequent modifications due to design changes and minimizing repetitive work fatigue by reflecting the accumulated design experience. In addition, the developed system was applied to the offshore plant structure module and it improved the work efficiency by more than 50% compared to the existing method.

Conceptual Design of Large Semi-submersible Platform for Wave-Offshore Wind Hybrid Power Generation (파력-해상풍력 복합발전을 위한 대형 반잠수식 플랫폼의 개념설계)

  • Kim, Kyong-Hwan;Lee, Kangsu;Sohn, Jung Min;Park, Sewan;Choi, Jong-Su;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.223-232
    • /
    • 2015
  • The present paper considers the conceptual design of floating wave-offshore wind hybrid power generation system. The worldwide demand for ocean renewable energy is increasing rapidly. Wave and offshore wind energy have been attractive among the various ocean renewable energy sources, and the site to generate electricity from wave and offshore wind accords well together. This means that a hybrid power generation system, which uses wave and offshore wind energy simultaneously has many advantages and several systems have been already developed in Western Europe. A R&D project for a 10 MW class floating wave-offshore wind hybrid power generation system has been also launched in Korea. A semi-submersible platform, which has four vertical columns at each corner of the platform to be connected with horizontal pontoons, was designed for this system considering arrangements of multiple wind turbines and wave energy converters. A mooring system and power cable were also designed based on the metocean data of installation site. In the present paper, those results are presented, and the difficulties and design method in the design of hybrid power generation system are presented.

Analysis of the Ripple Effect of Digital Transformation in the Shipbuilding & Offshore Plant Industry (조선해양플랜트산업의 디지털 전환에 따른 파급효과 분석)

  • Young-Gyu Lee;Woon-Seek Lee;Se-Hoon Park;Young-Seok Ock
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.spc
    • /
    • pp.9-18
    • /
    • 2023
  • In the global manufacturing industry, digital transformation is emerging as an important issue for companies to improve productivity and strengthen industrial competitiveness. The government and shipbuilding companies drive research and development to attain advanced technologies through digital transformation for shipbuilding & offshore plants, one of Korea's representative manufacturing industries. Therefore, the digital transformation of the shipbuilding & offshore plant industry was defined using an input-output analysis model, and the economic interrelationships of industries linked to the digital transformation of the shipbuilding & offshore plant industry were analyzed. According to the analysis, the shipbuilding & offshore plant industry ranks second among all 34 industries regarding the forward linkage effect. The backward linkage effect was ranked 27th, making it a mid-demand industry with a robust forward linkage effect. In addition, the production-induced effect was 0.455, the value-added-induced effect was 0.174, and the employment-induced effect was 1.779 people per billion won. The contribution of this study is that it will provide the basis for establishing policies necessary to strengthen the competitiveness of the shipbuilding & offshore plant industry. Also, it will help analyze the economic effects of digital transformation in other manufacturing industries.

A Study on the Legal Liabilities of Contractor as a Delay in the Product Delivery on the Offshore Plant Construction Contract (해양플랜트공사계약상 제조물인도지연에 따른 당사자의 법적 책임에 관한 고찰)

  • Jin, Ho-Hyun
    • MARITIME LAW REVIEW
    • /
    • v.29 no.2
    • /
    • pp.115-144
    • /
    • 2017
  • The impact of the global financial crisis, which began in the United States in 2007, had a major impact on the domestic shipping and shipbuilding industries. In this regard, the domestic shipyard has established an order-taking strategy in several ways as an alternative to lowering the amount of construction of commercial vessels due to deterioration of the shipping industry, and selected industrial sector was the offshore plant sector. However, the domestic shipyard has under performed the offshore plant in order to just increase sales and secure work without any risk analysis for EPC contracts. As a result, the shipyard has been charged more than the initial contract price with the offshore plant contractor, or the shipyard has become a legal issue requiring payment of liquidated damages due to delays in delivery of the product. The main legal disputes are caused by the thorough risk analysis and the inexperience of process control that can occur during offshore plant construction. and In particular, there is no sufficient review of the unequivocal provisions in the contract as an element of risk management. There is no human resource to review these contractual clauses. Therefore, this study identifies the existence of specific risks that could lead to delays in offshore plant construction, and examined the existence of any unequivocal clauses in contracts for offshore plant construction. and also discussed how the toxic clause applies to the actual parties and how the concrete risk factors in the construction contracts are transferred and expressed by referring to the interviews with the project manager of the domestic shipyard and the previous research. As a result, This paper examined the legal liability of the contracting parties regarding delayed delivery of the products due to the offshore plant construction contract. And to improve the domestic shipbuilding industry.

Optimal Design of Power Grid and Location of Offshore Substation for Offshore Wind Power Plant (해상풍력발전단지의 전력망과 해상변전소 위치에 대한 최적 설계)

  • Moon, Won-Sik;Won, Jong-Nam;Huh, Jae-Sun;Jo, Ara;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.984-991
    • /
    • 2015
  • This paper presents the methodology for optimal design of power grid for offshore wind power plant (OWPP) and optimum location of offshore substation. The proposed optimization process is based on a genetic algorithm, where the objective cost model is composed of investment, power loss, repair, and reliability cost using the net present value during the whole OWPP life cycle. A probability wind power output is modeled to reflect the characteristics of a wind power plant that produces electricity through wind and to calculate the reliability cost called expected energy not supplied. The main objective is to find the minimum cost for grid connection topology by submarine cables which cannot cross each other. Cable crossing was set as a constraint in the optimization algorithm of grid topology of the wind power plant. On the basis of this method, a case study is conducted to validate the model by simulating a 100-MW OWF.

3D Topology Optimization of Fixed Offshore Structure and Experimental Validation

  • Kim, Hyun-Seok;Kim, Hyun-Sung;Park, Byoungjae;Lee, Kangsu
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.263-271
    • /
    • 2020
  • In this study, we performed a three-dimensional (3D) topology optimization of a fixed offshore structure to enhance its structural stiffness. The proposed topology optimization is based on the solid isotropic material with penalization (SIMP) method, where a volume constraint is applied to utilize an equivalent amount of material as that used for the rule-based scantling design. To investigate the effects of the main legs of the fixed offshore structure on its structural stiffness, the leg region is selectively considered in the design domain of the topology optimization problem. The obtained optimal designs and the rule-based scantling design of the structure are manufactured by 3D metal printing technology to experimentally validate the topology optimization. The behaviors under compressive loading of the obtained optimal designs are compared with those of the rule-based scantling design using a universal testing machine (UTM). Based on the structural experiments, we concluded that by employing the topology optimization method, the structural stiffness of the structure was enhanced compared to that of the rule-based scantling design for an equal amount of the fabrication material. Furthermore, by effectively combining the topology optimization and rule-based scantling methods, we succeeded in enhancing the structural stiffness and improving the breaking load of the fixed offshore structure.

Experimental Study on Floating LNG Bunkering Terminal for Assessment of Loading and Offloading Performance (FLBT의 적하역 안정성 평가를 위한 실험적 연구)

  • Jung, Dong-Woo;Kim, Yun-Ho;Cho, Seok-Kyu;Jung, Dong-Ho;Sung, Hong-Gun;Kwon, Sun-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.51-61
    • /
    • 2018
  • In this study, the operability of an FLBT (floating LNG bunkering terminal) was evaluated experimentally. Model tests were conducted in the KRISO (Korea Research Institute of Ships and Ocean Engineering) ocean engineering basin. An FLBT, an LNG carrier, and two LNG bunkering shuttles were moored side by side with mooring ropes and fenders. Two white-noise wave cases, one irregular wave case, and various regular wave cases were generated. The relative local motions between each LNG loading arm and its corresponding manifold in the initial design configuration were calculated from measured 6-DOF motions at the center of gravity of each of the four vessels. Furthermore, the locations of the LNG loading arms and manifolds were varied to minimize the relative local motions.

A Design of IT Conversion Remote Monitoring System for Offshore Plant (IT융합 해양플랜트 원격 감시 시스템 설계)

  • Hwang, Hun-Gyu;Kim, Hun-Ki;Lee, Jae-Woong;Kim, Min-Jae;Yoo, Gang-Ju;Lee, Seong-Dae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.847-850
    • /
    • 2013
  • An offshore plant exposes environmental threats which are typhoon, tidal wave and etc., also the offshore plant exposes artificial threats by fire and collision of ship. In this paper, we design an IT conversion remote monitoring system for protection from environmental and artificial threats using camera, AtoN AIS. The system helps to monitor possible situations around offshore plant remotely. Therefore, we handle the situations appropriately and manage the offshore plant safely.

  • PDF

Design of an integrated network management system for telecom subsystem in offshore plants

  • Kang, Nam-seon;Kim, Nam-hun;Lee, Seon-ho;Kim, Young-goon;Yoon, Hyeon-kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.863-869
    • /
    • 2015
  • This study analyzed the offshore plant industry and related regulations such as ISO, IEC, and Norsok Standards to develop an integrated network management system (INMS) capable of both on-site and remote management and configuration of IP-based network equipment in offshore plants. The INMS was designed based on actual specifications and POS plans, and a plan of management was verified through an offshore plant engineering company. Various modules such as PAGA interface modules, CCTV, IP-PBX, and HF-radio communication modules were developed for system implementation. Protocol and data design and screen design were followed by framework development and introduction of the automatic satellite communication function.