• Title/Summary/Keyword: Offset Correction

Search Result 135, Processing Time 0.028 seconds

Radiometric Calibration Method of the GOCI (Geostationary Ocean Color Imager)

  • Kang, Gumsil;Myung, Hwan-Chun;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.60-63
    • /
    • 2006
  • Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of oceancolor around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. In this paper radiometric calibration concept of the GOCI is introduced. The GOCI radiometric response is modeled as a nonlinear system in order to reflect a nonlinear characteristic of detector. In this paper estimation approaches for radiometric parameters of GOCI model are discussed. For the GOCI, the offset signal depends on each spectral channel because dark current offset signal is a function of integration time which is different from channel to channel. The offset parameter can be estimated by using offset signal measurements for two integration time setting is described.

  • PDF

Design of a Frequency Offset Corrector and Analysis of Noises due to Quantization Angle in OFDM LAN Systems (OFDM 시스템에서 주파수편차 교정기의 설계와 각도 양자화에 의한 잡음의 분석)

  • 황진권
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.794-806
    • /
    • 2004
  • This paper deals with correction of frequency offset and analysis of quantization angle noise in the IEEE 802.1la OFDM system. The rotation phase per symbol due to the carrier frequency offset is estimated from auto-correlation of the short Preambles, which are over-sampled for the reduction of noise in OFDM signals. The pilot signals are introduced to estimate the rotation phase per OFDM symbol due to estimation error of the carrier frequency offset and the sampling frequency onset. During the estimation and correction of the frequency onsets, a CORDIC processor and a look-up table are used for the conversion between a rotation phase and its complex number. Being calculated by a limited number of bits in the CORDIC processor and the look-up table, the rotation phase and its complex number have quantization angle errors. The quantization errors are analyzed as SNR (signal to noise ratio) due to the quantization bit numbers. The minimum bit number is suggested to meet the specification of IEEE 802.1la properly. Finally, the quantization errors are evaluated through simulations on number of quantization bits and SNR of received signals.

INTRODUCTION OF NUC ALGORITHM IN ON-BOARD RELATIVE RADIOMERIC CALIBRATION OF KOMPSAT-2

  • Song, J.H.;Choi, M.J.;Seo, D.C.;Lee, D.H.;Lim, H.S.
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.504-507
    • /
    • 2007
  • The KOMPSAT-2 satellite is a push-broom system with MSC (Multi Spectral Camera) which contains a panchromatic band and four multi-spectral bands covering the spectral range from 450nm to 900nm. The PAN band is composed of six CCD array with 2528 pixels. And the MS band has one CCD array with 3792 pixels. Raw imagery generated from a push-broom sensor contains vertical streaks caused by variability in detector response, variability in lens falloff, pixel area, output amplifiers and especially electrical gain and offset. Relative radiometric calibration is necessary to account for the detector-to-detector non-uniformity in this raw imagery. Non-uniformity correction (NUC) is that the process of performing on-board relative correction of gain and offset for each pixel to improve data compressibility and to reduce banding and streaking from aggregation or re-sampling in the imagery. A relative gain and offset are calculated for each detector using scenes from uniform target area such as a large desert, forest, sea. In the NUC of KOMPSAT-2, The NUC table for each pixel are divided as HF NUC (high frequency NUC) and LF NUC (low frequency NUC) to apply to few restricted facts in the operating system ofKOMPSAT-2. This work presents the algorithm and process of NUC table generation and shows the imagery to compare with and without calibration.

  • PDF

A Study on a Post-Processing Technique for MBES Data to Improve Seafloor Topography Modeling (해저지형 모델링 향상을 위한 MBES자료 후처리 기법 연구)

  • Kim, Dong-Moon;Kim, Eung-Nam
    • Spatial Information Research
    • /
    • v.19 no.2
    • /
    • pp.19-28
    • /
    • 2011
  • Three dimensional modeling for seafloor topography is essential to monitoring displacements in underwater structures as well as all sorts of disasters along the shore. MBES is a system that is capable of high-density water depth measurement for seafloor topography and is in broad uses for gathering 3D data and detecting displacements. MBES data, however, contain random errors that take place in the equipment offset and surveying process and require systematic researches on the correction of wrong depth measurements. Thus this study set out to propose a post-processing technique to eliminate an array of random errors taking place after equipment offset correction and basic noise correction in the MBES system and analyze its applicability to seafloor topography modeling by applying it to the subject area.

New In-Orbit Pixel Correction Method

  • Kim Youngsun;Kong Jong-Pil;Heo Haeng-Pal;Park Jong-Euk;Chang Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.604-607
    • /
    • 2005
  • All CCD pixels do not react uniformly even if the light of same radiance enters into the camera. This comes from the different camera optical characteristics, the read-out characteristics, the pixel own characteristics and so on. Usually, the image data of satellite camera can be corrected by the various image-processing methods in the ground. However, sometimes, the in-orbit correction is needed to get the higher quality image. Especially high frequency pixel correction in the middle of in-orbit mission is needed because the in-orbit data compression with the high frequency loss is essential to transmit many data in real time due to the limited RF bandwidth. In this case, this high frequency correction can prevent have to have any unnecessary high frequency loss. This in-orbit correction can be done by the specific correction table, which consists of the gain and the offset correction value for each pixel. So, it is very important to get more accurate correction table for good correction results. This paper shows the new algorithm to get accurate pixel correction table. This algorithm shall be verified theoretically and also verified with the various simulation and the test results.

  • PDF

KOMPSAT Optical Image Registration via Deep-Learning Based OffsetNet Model (딥러닝 기반 OffsetNet 모델을 통한 KOMPSAT 광학 영상 정합)

  • Jin-Woo Yu;Che-Won Park;Hyung-Sup Jung
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1707-1720
    • /
    • 2023
  • With the increase in satellite time series data, the utility of remote sensing data is growing. In the analysis of time series data, the relative positional accuracy between images has a significant impact on the results, making image registration essential for correction. In recent years, research on image registration has been increasing by applying deep learning, which outperforms existing image registration algorithms. To train deep learning-based registration models, a large number of image pairs are required. Additionally, creating a correlation map between the data of existing deep learning models and applying additional computations to extract registration points is inefficient. To overcome these drawbacks, this study developed a data augmentation technique for training image registration models and applied it to OffsetNet, a registration model that predicts the offset amount itself, to perform image registration for KOMSAT-2, -3, and -3A. The results of the model training showed that OffsetNet accurately predicted the offset amount for the test data, enabling effective registration of the master and slave images.

An automatic calibration technique for piezoelectric pressure transducers (압전형 압력센서의 교정기법 자동화)

  • Hong, Sung-Soo;Choi, Ju-Ho;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1368-1371
    • /
    • 1996
  • This paper presents an automatic calibration technique for piezoelectric low pressure transducer, which is useful to measure a pressure within 500 psi. This system with automatic calibration function and error correction algorithm generates standard dynamic pressure for the calibration of sensor. With the compensation for the offset voltage and the pressure error, the accuracy and the usefulness of the proposed scheme is validated.

  • PDF

An Automatic Calibration Technique for Piezoelectric Pressure Transducers (압전형 압력센서의 교정기법 자동화)

  • 홍성수;최주호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1012-1016
    • /
    • 1996
  • This paper presents an automatic calibration technique for piezoelectic low pressure transducer, which is useful to measure a pressure within 500 psi. This system with automatic calibration function and error correction algorithm generates standard dynamic pressure for the calibration of sensor. With the compensation for the offset voltage and the pressure error, the accuracy and the usefulness of the proposed scheme is validated.

  • PDF

Error Correction of Digital Data in Radio Data System (라디오 데이터 시스템의 디지털 데이터 에러 정정)

  • 김기근
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.78-81
    • /
    • 1991
  • Digital radio data is composed of groups which are divided into 4 blocks of 26 bits. And each block is made up of information word and check word. Check word of digital radio data that is composed ofcode word and offset word is used for group/block synchronization and error correction. In this paper, we have investigated the group/block synchronizer using offext word and shortened cyclic decoder for correcting error produced during the radio data transimission. Also, we have simulated the decoding process of the proposed decoder. From the simulation results, we have confirmed that the proposed decoder most with the required coding capcbility.

  • PDF