• Title/Summary/Keyword: Offload

Search Result 86, Processing Time 0.025 seconds

A Survey on Offload Methods in Mobile Cloud Computing Environments (모바일 클라우드 컴퓨팅 환경에서 오프로드 방법 연구)

  • Byun, HwiRim;Han, Seok-Hyeon;Park, Boo-Kwang;Song, Eun-Ha;Jeong, Young-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.204-206
    • /
    • 2016
  • 모바일 디바이스와 어플리케이션의 발전으로 Mobile Cloud Computing(MCC)의 필요성이 대두되고 있다. MCC는 다수의 모바일 디바이스를 하나의 클라우드 환경으로 통합해 배터리 수명, 스토리지, 프로세싱 등의 성능 향상을 가져온다. 그러나 아직 MCC의 오프로드처리 방식이 명확히 정의되어 있지 않은 상황이다. 본 논문은 MCC 환경에서 모바일 디바이스의 작업을 클라우드에 이관해 처리하는 오프로드를 서버의 역할에 따라 다섯 가지로 나누어 정의해 제안한다. 마지막으로 더 효율적인 오프로드 방법을 제안하여 미래 연구 방향에 대해 논의한다.

5G Network Communication, Caching, and Computing Algorithms Based on the Two-Tier Game Model

  • Kim, Sungwook
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.61-71
    • /
    • 2018
  • In this study, we developed hybrid control algorithms in smart base stations (SBSs) along with devised communication, caching, and computing techniques. In the proposed scheme, SBSs are equipped with computing power and data storage to collectively offload the computation from mobile user equipment and to cache the data from clouds. To combine in a refined manner the communication, caching, and computing algorithms, game theory is adopted to characterize competitive and cooperative interactions. The main contribution of our proposed scheme is to illuminate the ultimate synergy behind a fully integrated approach, while providing excellent adaptability and flexibility to satisfy the different performance requirements. Simulation results demonstrate that the proposed approach can outperform existing schemes by approximately 5% to 15% in terms of bandwidth utilization, access delay, and system throughput.

Case Study : BIM for Planning, Simulating, and Implementing Complex Site Logistics

  • Kim, JongHoon;Cohen, Fernando Castillo
    • Journal of KIBIM
    • /
    • v.5 no.4
    • /
    • pp.47-52
    • /
    • 2015
  • This paper presents a case study using Building Information Modeling (BIM) for planning, simulating, and implementing complex site logistics in a headquarter office building construction project in Silver Spring, MD. As part of the project a prefabricated 92ft structural tube steel pedestrian connector bridge was installed between two adjacent buildings in the city of Silver Spring, MD. There were multiple significant challenges to deliver, offload, prepare, and install the connector bridge safely, on time, and with the minimum disturbances to the neighbors. BIM was of the foremost importance to visualize, simulate, analyze, improve, and communicate the site logistics plan from delivery to installation of the connector bridge. As a result of the effort, GC of the project was able to prepare a highly detailed plan, communicate it effectively to all stakeholders, and flawlessly execute the work as planned. This case study would provide a useful reference for contractors who are seeking a better planning method that enables generation of more accurate, implementable, optimized plans for complex site logistics.

Effective Mobile Data Offloading using DBSCAN (DBSCAN을 사용한 효과적인 모바일 데이터 오프로딩)

  • Kim, SeungKeun;Yang, Sung-Bong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.81-84
    • /
    • 2018
  • Recently, many researchers claim that mobile data offloading is a key solution to alleviating overloaded cellular traffic by dividing the overloaded traffic with femtocells, WiFi networks or users. In this paper, we propose an idea to select a group of users, known as VIPs, that is able to effectively transfer the data to others using Density-Based Spatial Clustering of Application with Noise, also known as DBSCAN algorithm. We conducted our experiments using NCCU real trace dataset. The results show that our proposed idea offload about 70~77% of the network with VIP set size of four, which is better than the compared methods.

Communication Resource Allocation Strategy of Internet of Vehicles Based on MEC

  • Ma, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.389-401
    • /
    • 2022
  • The business of Internet of Vehicles (IoV) is growing rapidly, and the large amount of data exchange has caused problems of large mobile network communication delay and large energy loss. A strategy for resource allocation of IoV communication based on mobile edge computing (MEC) is thus proposed. First, a model of the cloud-side collaborative cache and resource allocation system for the IoV is designed. Vehicles can offload tasks to MEC servers or neighboring vehicles for communication. Then, the communication model and the calculation model of IoV system are comprehensively analyzed. The optimization objective of minimizing delay and energy consumption is constructed. Finally, the on-board computing task is coded, and the optimization problem is transformed into a knapsack problem. The optimal resource allocation strategy is obtained through genetic algorithm. The simulation results based on the MATLAB platform show that: The proposed strategy offloads tasks to the MEC server or neighboring vehicles, making full use of system resources. In different situations, the energy consumption does not exceed 300 J and 180 J, with an average delay of 210 ms, effectively reducing system overhead and improving response speed.

DRL based Dynamic Service Mobility for Marginal Downtime in Multi-access Edge Computing

  • Mwasinga, Lusungu Josh;Raza, Syed Muhammad;Chu, Hyeon-Seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.114-116
    • /
    • 2022
  • The advent of the Multi-access Edge Computing (MEC) paradigm allows mobile users to offload resource-intensive and delay-stringent services to nearby servers, thereby significantly enhancing the quality of experience. Due to erratic roaming of mobile users in the network environment, maintaining maximum quality of experience becomes challenging as they move farther away from the serving edge server, particularly due to the increased latency resulting from the extended distance. The services could be migrated, under policies obtained using Deep Reinforcement Learning (DRL) techniques, to an optimal edge server, however, this operation incurs significant costs in terms of service downtime, thereby adversely affecting service quality of experience. Thus, this study addresses the service mobility problem of deciding whether to migrate and where to migrate the service instance for maximized migration benefits and marginal service downtime.

Economic Alternative for Volumetric Module Lifting/Offloading (볼류메트릭 모듈 양중 및 인양 대안에 관한 연구)

  • Song, Seung-Ho;Kwon, Woo-Bin;Choi, Jin-Ouk;Cho, Hun-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.75-76
    • /
    • 2023
  • The construction industry's lack of experience and expertise makes it difficult for projects to realize the full benefits of implementing modular construction. Such project performance-hindering elements are often labeled as modular challenges. The added requirement for the transportation of the finished volumetric module is one aspect of the 'module transportation logistics,' the under-researched modular challenge that can prevent projects from incurring maximum cost and productivity benefits. The typical module transportation phases include lifting, transporting, and offloading. From conducting a literature review, this paper aims to investigate the equipment commonly adopted to lift and offload the module and validate its economic efficiency by comparing it with the alternative lifting/offloading equipment used in the two case projects. The results showed that hydraulic jacks are an economic alternative to the crane for lifting/offloading the module. The increase in single-module projects with smaller budgets made crane usage economically undesirable, and this study suggested a viable option for a more economical alternative.

  • PDF

Delayed offloading scheme for IoT tasks considering opportunistic fog computing environment (기회적 포그 컴퓨팅 환경을 고려한 IoT 테스크의 지연된 오프로딩 제공 방안)

  • Kyung, Yeunwoong
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.89-92
    • /
    • 2020
  • According to the various IoT(Internet of Things) services, there have been lots of task offloading researches for IoT devices. Since there are service response delay and core network load issues in conventional cloud computing based offloadings, fog computing based offloading has been focused whose location is close to the IoT devices. However, even in the fog computing architecture, the load can be concentrated on the for computing node when the number of requests increase. To solve this problem, the opportunistic fog computing concept which offloads task to available computing resources such as cars and drones is introduced. In previous fog and opportunistic fog node researches, the offloading is performed immediately whenever the service request occurs. This means that the service requests can be offloaded to the opportunistic fog nodes only while they are available. However, if the service response delay requirement is satisfied, there is no need to offload the request immediately. In addition, the load can be distributed by making the best use of the opportunistic fog nodes. Therefore, this paper proposes a delayed offloading scheme to satisfy the response delay requirements and offload the request to the opportunistic fog nodes as efficiently as possible.

The IPSec Systems on TOE for Gigabit Network (기가비트 네트워크 지원을 위한 TOE 기반 IPSec 시스템)

  • Shin, Chi-Hoon;Kim, Sun-Wook;Park, Kyoung;Kim, Sung-Woon
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1035-1038
    • /
    • 2005
  • This paper describes the designs and the implementations of two H/W IPSec Systems, look-aside and inline, on TOE (Transport Offloading Engine). These systems aim for guaranteeing the security of datagram networks while preserving the bandwidth of gigabit networks. The TOE offloads a host CPU from network burdens, so that it makes the gigabit wire speed possible, and then deeper level security architecture of the IPSec guarantees the security of gigabit service network dominated by datagram packets. The focus of this paper is to minimize the TOE's performance degradation caused by the computation-oriented IPSec. The look-aside IPSec system provides a significant improvement in the CPU offload of the IPSec cryptography loads. However, the inline system completely offloads the host CPU from whole IPSec loads, providing significant additional cost saving compared to the look-aside system. In this paper, the implementations of TOE cards including commercial IPSec processors are presented. As the result of performance evaluation with the protocol analyzer, we can get the fact that the inline IPSec system is 8 times faster than the S/W system and 2 times faster than the look-aside system.

  • PDF

Cellular Traffic Offloading through Opportunistic Communications Based on Human Mobility

  • Li, Zhigang;Shi, Yan;Chen, Shanzhi;Zhao, Jingwen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.872-885
    • /
    • 2015
  • The rapid increase of smart mobile devices and mobile applications has led to explosive growth of data traffic in cellular network. Offloading data traffic becomes one of the most urgent technical problems. Recent work has proposed to exploit opportunistic communications to offload cellular traffic for mobile data dissemination services, especially for accepting large delayed data. The basic idea is to deliver the data to only part of subscribers (called target-nodes) via the cellular network, and allow target-nodes to disseminate the data through opportunistic communications. Human mobility shows temporal and spatial characteristics and predictability, which can be used as effective guidance efficient opportunistic communication. Therefore, based on the regularity of human mobility we propose NodeRank algorithm which uses the encounter characteristics between nodes to choose target nodes. Different from the existing work which only using encounter frequency, NodeRank algorithm combined the contact time and inter-contact time meanwhile to ensure integrity and availability of message delivery. The simulation results based on real-world mobility traces show the performance advantages of NodeRank in offloading efficiency and network redundant copies.