• Title/Summary/Keyword: Off-design condition

Search Result 281, Processing Time 0.025 seconds

Design of Sliding Mode Controller with New Perturbation Estimator (새로운 섭동 추정기를 갖는 슬라이딩 모드 제어기의 설계)

  • Ham, Joon-Ho;Choi, Seung-Bok
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.782-787
    • /
    • 2004
  • In the conventional sliding mode control technique, a priori knowledge of the bound of external disturbances or/and parameter uncertainties is required to assure control robustness. This, however, may not be easy to obtain in practical situation. This work presents a novel methodology, a sliding mode controller with perturbation estimator, which offers a robust control performance without a priori knowledge about the perturbations (disturbances and parameter uncertainties). The proposed technique is featured by an integrated average value of the imposed perturbation over a certain sampling period. This work also proposes two effective actuating methods of the perturbation estimator: on-off condition and filtering condition. In order to demonstrate the effectiveness of the proposed methodology, a two-link robotic system is adopted and its position control performance is evaluated. In addition, a comparative work between the conventional technique and the proposed one is undertaken.

  • PDF

Well-Conditioned Observer Design via LMI (LMI를 이용한 Well-Conditioned 관측기 설계)

  • 허건수;정종철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.21-26
    • /
    • 2003
  • The well-conditioned observer in a stochastic system is designed so that the observer is less sensitive to the ill-conditioning factors in transient and steady-state observer performance. These factors include not only deterministic issues such as unknown initial estimation error, round-off error, modeling error and sensing bias, but also stochastic issues such as disturbance and sensor noise. In deterministic perspectives, a small value in the L$_2$ norm condition number of the observer eigenvector matrix guarantees robust estimation performance to the deterministic issues and its upper bound can be minimized by reducing the observer gain and increasing the decay rate. Both deterministic and stochastic issues are considered as a weighted sum with a LMI (Linear Matrix Inequality) formulation. The gain in the well-conditioned observer is optimally chosen by the optimization technique. Simulation examples are given to evaluate the estimation performance of the proposed observer.

  • PDF

The Effects of Engine's Misfiring Condition on the Dynamic Behaviour of Resilient Mounting Systems (엔진의 착화실패가 탄성지지계의 동적거동에 미치는 영향)

  • 장민오;손석훈;김의간;김의간
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.503-511
    • /
    • 1996
  • There is a tendency of using the resilient mounting system to control the structure born noise transimitted from a engine of which weight is comparatively light and of which speed is comparatively high. According to recent reports, the resilient mounting system is applied to control the vibration of a engine running up to 300 - 400 R.P.M.. Furthermore, the resilient system is also used to the ships such as marine exploring ships, fishing boats, and military vessels. It is not desirous to apply the results for the resilient mounting systems of automobile engines to the controls of the vibrations of marine engines. Marine engines are worked under the idle speed in port and are operated up to the maximum contineous revolution at sea(running up condition). And marine engines are usually worked in inevitable conditions such as a misfire and a cut-off cylinder operating condition. Concerning the above running conditions, a resilient mounting system should be designed in the case of marine engines. In this paper, we studied the effect of engine's misfire on the resilient mounting systems. And the influences of design parameters, such as dynamic characteristics and fitting angles of resilient rubber mountings, were also investigated respectively on the single and double resilient mounting systems.

  • PDF

Parameter Study for Optimal Design of Smart TMD (스마트 TMD의 최적설계를 위한 파라메터 연구)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.123-132
    • /
    • 2017
  • A smart tuned mass damper (TMD) was developed to provide better control performance than a passive TMD for reduction of earthquake induced-responses. Because a passive TMD was developed decades ago, optimal design methods for structural parameters of a TMD, such as damping constant and stiffness, have been developed already. However, studies of optimal design method for structural parameters of a smart TMD were little performed to date. Therefore, parameter studies of structural properties of a smart TMD were conducted in this paper to develop optimal design method of a smart TMD under seismic excitation. A retractable-roof spatial structure was used as an example structure. Because dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition, control performance of smart TMD under off-tuning was investigated. Because mass ratio of TMD and smart TMD mainly affect control performance, variation of control performance due to mass ratio was investigated. Parameter studies of structural properties of a smart TMD was performed to find optimal damping constant and stiffness and it was compared with the results of optimal passive TMD design method. The design process developed in this study is expected to be used for preliminary design of a smart TMD for a retractable-roof spatial structure.

The Design and Analysis of Composite Advanced Propeller Blade for Next Generation Turboprop Aircraft (차세대 터보프롭 항공기용 복합재 최신 프로펠러 설계 및 해석)

  • Choi, Won;Kim, Kwang-Hae;Lee, Won-Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.11-17
    • /
    • 2012
  • The one way fluid structure interaction analysis on advanced propeller blade for next generation turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point. Blade sweep is designed based on the design mach number and target propulsion efficiency. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and showed the enhanced performance than the conventional propeller. The skin-foam sandwich structural type is adopted for blade. The high stiffness, strength carbon/epoxy composite material is used for the skin and PMI(Polymethacrylimide) is used for the foam. Aerodynamic load is calculated by computational fluid dynamics. Linear static stress analysis is performed by finite element analysis code MSC.NASTRAN in order to investigate the structural safety. The result of structural analysis showed that the design has sufficient structural safety. It was concluded that structural safety assessment should incorporate the off-design points.

Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan (전향 스윕 축류형 팬에서의 팁 누설 유동 구조)

  • Lee, Gong-Hee;Baek, Je-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.131-136
    • /
    • 2002
  • A computational analysis using Reynolds stress model in FLUENT is conducted to give a clear understanding of the effect of blade loading on the structure of tip leakage flow in a forward-swept axial-flow fan at design condition ($\phi$=0.25) and off-design condition ($\phi$=0.21 and 0.30). The roll-up of tip leakage flow starts near the minimum static wall pressure position, and the tip leakage vortex developes along the centerline of the pressure trough within the blade passages. Near tip region, a reverse flow induced by tip leakage vortex has a blockage effect on the through-flow. As a result, high momentum region is observed below the tip leakage vortex. As the blade loading increases, the reverse flow region is more inclined toward circumferential direction and the onset position of the rolling-up of tip leakage flow moves upstream. Because the casing boundary layer becomes thicker, and the mixing between the through-flow and the leakage jet with the different flow direction is enforced, the streamwise vorticity decays more fast with blade loading increasing. The computational results show that a distinct tip leakage vortex is observed downstream of the blade trailing edge at $\phi$=0.30, but it is not observed at $\phi$=0.21 and 0.25.

  • PDF

A Design of Security Protocol for Active Warehouse Condition Management System based on Ubiquitous Environment (유비쿼터스 환경에능동형 창고 상태관리를 위한 보안 프로토콜 설계)

  • John, Young-Jun;Choi, Yong-Sik;Shin, Seung-Ho;Park, Sang-Min
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.6
    • /
    • pp.91-108
    • /
    • 2006
  • RFID/USN is important infrastructure of the ubiquitous society. And so, It is various and practical research is attempted. These two base technology have physical characteristic and complement relationship. Like this relationship is applied Following example that is system research which manages warehouse stocks and conditions. First, We adhere RFID Tag at the Pallet of the warehouse and do identification goods. And then, It grasps the environment state information of stocks with sensor module which has Zigbee wireless communication function. From like this process RFID Tag information and jop-control command of sensor node also it is exposed to air. Therefore, We control sensor node in USN/RFID environment through the mobile device. And system design for the security Apply of the process is main purpose of this paper's. We propose the condition and function of the mobile device to the secondary. And We define the relation of the sensor node with RFID to be arranged to a warehouse. Finally, This paper is designed to find a trade-off of the following viewpoints. First, We offer suitable sensor-control information to a actual manager. Second, We offer RFID tag security approach to control the action of the sensor. Third, It increases the survivability of sensor node form.

The Study on the Vehicle-Mounted Radar System of Structural Design Under Environment Conditions (차량 탑재형 레이더 시스템의 구조물에 대한 연구)

  • Jung, Hwa Young;Lee, Keon Min;Kang, Kwang Hee;Kang, Jong Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.797-804
    • /
    • 2016
  • The vehicle-mounted radar system (VMRS) including its electronic parts must be designed so that its performance is maintained under varying environmental conditions. The important aspects are typically weight and safety. Since many rotating VMRSs have been developed, discussion about the vibration and shock requirements for the transportation conditions has occurred: in addition, the dynamic unpaved, paved, and off-road effects have been emphasized with respect to lightweight designs. A lightweight-design VMRS should be capable of operating stably under the wind condition with the support of the vehicle structure. In this paper, a structural analysis regarding the support of the VMRS is performed, whereby the real-load conditions for three types of road and pressure were employed in terms of the wind condition. The structural analysis for the safety of the VMRS is performed, and the structural-integrity analytical processes of the VMRS are presented for different load conditions.

Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (I) - Blade Tip - (입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (I) - 블레이드 끝단면 -)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.349-356
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the tip of the rotating turbine blade with various incoming flow incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with a mean tip clearance of 2.5% of the blade chord. The incoming flow Reynolds number is $1.5{\times}10^5$ at design condition. To examine the effect of off-design condition, the experiments with various incidence angles ranging between $-15^{\circ}$ and $+7{\circ}$ were conducted. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. The results indicated that the incidence angle strongly affects the behavior of tip leakage flow around the blade tip and consequently plays an important role in determining heat transfer characteristics on the tip. For negative incidence angles, the heat/mass transfer in the upstream region on the tip decreases by up to 20%. On the contrary, for positive incidence angles, much higher heat transfer coefficients are observed even with small increase of incidence angle.

Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (II) - Blade Surface - (입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (II) - 블레이드 표면 -)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.357-366
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the surface of the rotating turbine blade with various incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with the mean tip clearance of 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. At design condition, the inlet Reynolds number is $Re_c=1.5{\times}10^5$ which results in the blade rotation speed of 255.8 rpm. Also, the effect of off-design condition is examined with various incidence angles between $-15^{\circ}$ and $+7{\circ}$. The results indicated that the incidence angle has significant effects on the blade surface heat transfer. In mid-span region, the laminar separation region on the pressure side is reduced and the laminar flow region on the suction side shrinks with increasing incidence angle. Near the tip, the effect of tip leakage flow increases in span wise and axial directions as the incidence angle decreases because the tip leakage flow is formed near the suction side surface. However, the effect of tip leakage flow is reduced with positive incidence angle.