• Title/Summary/Keyword: Off-design

Search Result 3,047, Processing Time 0.04 seconds

Baffle design and test for wide-field off-axis telescopes

  • Kim, Sanghyuk;Pak, Soojong;Chang, Seunghyuk;Kim, Geon Hee;Yang, Sun Choel;Lee, Sang Yong;Huh, Myung Sang;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.72.2-72.2
    • /
    • 2013
  • An off-axis telescope has several advantages in optical performance comparing with a conventional on-axis telescope. However, in general, an off-axis telescope has a narrow field of view due to the linear astigmatism caused by the asymmetric structure. It was shown in the previous work that the linear astigmatism can be eliminated by properly configuring parameters in a confocal off-axis reflector system. Furthermore, the third order aberrations of a confocal off-axis telescope can be minimized by optimizing the shape of the mirrors. Despite many advantages, the confocal off-axis telescopes have been evaded because of difficulties of off-axis mirror fabrication, alignment process and unaccustomed off-axis baffle design. The baffle for the off-axis telescope should be designed considering that the effects of stray lights are different because of the asymmetry of off-axis system. In this poster, the design, manufacturing, and test for the baffle and housing of an off-axis telescope are presented.

  • PDF

Design of an Optimum Thyristor Snubber Circuit with Turn-off Model (다이리스터의 Turn-off 모델을 이용한 최적 Snubber 회로 설계)

  • Kim, Kwon-Ho;Moon, Yong-Hyun;Song, Joong-Ho;Chy, Ick;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.773-776
    • /
    • 1993
  • The thyristor turn-off model plays an important part in the design of thyristor snubber circuit. However, it is difficult to determine the thyristor turn-off characteristics. In this paper two methods to establish the simple thyristor turn-off model are proposed based on the reverse recovery characteristics given in the data sheets. Using the simple thyristor turn-off model, the optimum thyristor snubber circuit design procedures are presented considering maximum voltage spike, maximum reverse dv/dt, and turn-off loss.

  • PDF

Unsteady Transitional Boundary Layer due to Rotor Stator Interaction at Design and Off Design Operations (설계점 및 탈설계점에서의 rotor-stator 상호작용에 의한 비정상 천이 경계층의 수치해석적 연구)

  • Kang Dong Jin;Jun Hyun Joo
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.17-30
    • /
    • 1999
  • The unsteady transitional boundary layer due to rotor-stator interaction was studied at two operation points, the design and one off design points. The off design point leads to lower blade loading and lower Reynolds number. A Navier-Stokes code developed in the previous study was parallelized to expedite computations. A low Reynolds number turbulence model was used to close the momentum equations. All computations show good agreement with experimental data. The wake induced transitional strip on the suction side of the stator is clearly captured at design point operation. There is no noticeable change in shape and phase angle of the wake induced strip even in the laminar sublayer. The wake induced transitional strip at off design point shows more complex structure. The wake induced transitional strip is observed only in the turbulent layer, and becomes obscure in the laminar sublayer and buffer layer. This behavior is probably consequent upon that the transition is governed by both wake induced strip and natural transition mechanism by Tollmien-Schlichting wave.

  • PDF

Prediction of flow field in an axial compressor with a non-uniform tip clearance at the design and off-design conditions (설계점 및 탈설계점에서 비균일 익단 간극을 가지는 축류 압축기의 유동장 예측)

  • Kang, Young-Seok;Park, Tae-Choon;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.6
    • /
    • pp.46-53
    • /
    • 2008
  • Flow structures in an axial compressor with a non-uniform tip clearance were predicted by solving a simple prediction method. For more reliable prediction at the off-design condition, off-design flow characteristics such as loss and flow blockage were incorporated in the model. The predicted results showed that flow field near the design condition is largely dependent on the local tip clearance effect. However overall flow field characteristics are totally reversed at off-design condition, especially at the high flow coefficient. The tip clearance effect decreases, while the local loss and flow blockage make a complicated effect on the compressor flow field. The resultant fluid induced Alford's force has a negative value near the design condition and it reverses its sign as the flow coefficient increases and shows a very steep increase as the flow coefficient increases.

RESEARCH ON MODULARIZED DESIGN AND PERFORMANCE ASSESSMENT BASED ON MULTI-DRIVER OFF-ROAD VEHICLE DRIVING-LINE

  • Yi, J.J.;Yu, B.;Hu, D.Q.;Li, C.G.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.375-382
    • /
    • 2007
  • The multi-driver off-road vehicle drive-line consists of many components, with close connections among them. In order to design and analyze the drive-line efficiently, a modular methodology should be taken. The aim of a modular approach to the modeling of complex systems is to support behavior analysis and simulation in an iterative and thus complex engineering process, by using encapsulated submodels of components and of their interfaces. Multi-driver off-road vehicles are comparatively complicated. The driving-line is an important core part to the vehicle, it has a significant contribution to the performance. Multi-driver off-road vehicles have complex driving-lines, so performance is heavily dependent on the driving-line. A typical off-road vehicle's driving-line system consists of a torque converter, transmission, transfer case and driving-axles, which transfers the power generated by the engine and distributes it effectively to the driving wheels according to the road condition. According to its main function, this paper proposes a modularized approach for design and evaluation of the vehicle's driving-line. It can be used to effectively estimate the performance of the driving-line during the concept design stage. Through an appropriate analysis and assessment method, an optimal design can be reached. This method has been applied to practical vehicle design, it can improve the design efficiency and is convenient to assess and validate the performance of a vehicle, especially of multi-driver off-road vehicles.

A Basic Study on an Application of Quantity Take-Off Requirements for Open BIM-based Schematic Estimation of Architectural Work (개방형BIM기반의 건축공사 개산견적을 위한 물량산출 적용지침 활용방안 기초 연구)

  • Kim, Inhan;Um, Sung-Gon;Choi, Jungsik
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.182-192
    • /
    • 2015
  • In recent years, numerous studies have attempted to extract quantity data by using Building Information Modeling (BIM). In terms of open-BIM based quantity take-off at the early design stage, only few studies were conducted in the field of cost engineering. A lack of compatibility of open BIM for information exchange is postulated as the cause. The Industry Foundation Classes (IFC) extension model has been developed to accommodate the interoperability with quantity take-off software. Improvement of open BIM for quantity take-off needs exchange requirements and model guidelines. For this purpose, the quantity data of IFC models were analyzed using BIM analysis tools. This paper also provides a proposal of requirements on open BIM based quantity take-off at the early design stage. Further this study have been develop the interface system for open BIM based quantity take-off requirements with the results on this study.

A Study on Design Method of Tap-off with High Performance for CATV Transmitting Circuits (CATV 신호전송용 Tap-off의 고성능 설계법에 관한 연구)

  • 김동일;김정훈;정세모
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.425-433
    • /
    • 1994
  • The conventional weakly-coupled tap-off for CATV and/or MATV transmitting circuits has been fabricated empirically and experimentally. So, the theoretical analysis or the design method of the conventional one has not been established, the characteristics of which were not good. To solve these problems, we have proposed a modified weakly-coupled freedom in design. This paper describes the design theories and analysis method of the theoretical frequency characteristics of a Modified Weakly-coupled Tap-off with high density of coupling intervals for CATV and/or MATV system. From the theoretical analysis it has been shown that the frequency characteristics of the tap-off proposed here are improved much in comparision with the conventional one. Furthermore, the practical measurements of frequency characteristics for the fabricated circuits show agreement with the theoretical results, and hence, the validity of proposed design and analysis methods has been confirmed.

  • PDF

Performance Characteristics for Off-design Operation of Micro Gas Turbines (마이크로 가스터빈의 탈설계 운전 성능특성)

  • Kim, T.S.;Hwang, S.H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.39-47
    • /
    • 2004
  • Micro gas turbines are designed with low turbine inlet temperature and pressure ratio. To overcome the efficiency defect of the simple cycle, adoption of the recuperator is an inevitable choice. In addition to the design performance, we should also pay attention to the off-design performance of gas turbines since they usually operate at part-load conditions lot a considerable amount of their lifetime. This study analyzes off-design performance characteristics of micro gas turbines and addresses the importance of the recuperation process doting the part load operation. Comparative analyses have been performed to evaluate the part load performance differences among various design and operating options : simple vs recuperative cycles, single vs two shaft configurations, various operating strategies for the single shaft configuration, and current vs advanced engines. Major finding is that maintaining high turbine exhaust temperature is crucial for efficient operation of micro gas turbines.

Design of Switched Reluctance Motor for Minimizing the Torque Ripple (스위치드 릴럭턴스 전동기의 토오크 리플 저감 설계)

  • Kim, Youn-Hyun;Choi, Jae-Hak;Kim, Sol;Lee, Ju;RhYu, Se-Hyun;Sung, Ha-Kyung;Im, Tae-Bin;Borm, Jin-hwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.339-350
    • /
    • 2002
  • Pole arcs, turn-on angle, and turn-off angle are major design factors, which affects Switched Reluctance Motor's torque performance. If these design factors are considered independently, the enhancement of SRM performance is restricted. Therefore, we need to consider pole arcs, turn-on angle and turn-off angle at the same time, when we design SR. In this paper, we analyze how these factors affect to torque ripple and average torque by using dynamic Finite Element Method(FEM) with derive circuit and present the good design results according to the various speeds. Especially, we formulate turn-on and turn-off angle from a voltage equation and present effective design range.

Performance Characteristics for Off-design Operation of Micro Gas Turbines (마이크로 가스터빈의 탈설계 운전 성능특성)

  • Hwang, S.H.;Kim, T.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.80-87
    • /
    • 2003
  • Micro gas turbines are designed with low turbine inlet temperature and pressure ratio. To overcome the efficiency defect of the simple cycle, adoption of the recuperator is an inevitable choice. In addition to the design performance, we should also pay attention to the off-design performance of gas turbines since they usually operate at part-load conditions for a considerable amount of the time. This study aims at analyzing off-design performance characteristics of micro gas turbines and addressing the importance of the recuperator in the part load operation. Comparative analyses have been performed to evaluate the part load performance differences among various design and operating options : simple vs recuperative cycles, single vs two shaft configurations, various operating strategies for the single shaft configuration (fuel only control, variable speed operation, variable inlet guide vane control), and current vs advanced engines. Major finding is that maintaining turbine at high level is crucial in efficient operation of micro gas turbines.

  • PDF