• Title/Summary/Keyword: Off-Road

Search Result 287, Processing Time 0.029 seconds

A Study on the Locational Characteristics and Road System of Existing Old Settlements in Cheongju City (청주 원도심 내 현존하는 옛마을의 입지특성과 가로체계의 변화)

  • Kwon, Mi-Sun;Kim, Tai-Young
    • Journal of the Korean housing association
    • /
    • v.21 no.5
    • /
    • pp.137-144
    • /
    • 2010
  • The purpose of this study is to clarify locational characteristics and the road systems of existing 22 old settlements in Cheongju downtown of Korea. These old settlements are classified largely into two types by geographical feature; Hill type located in ridge and Valley type in the valley from the ridge. The Hill type is further categorized into San-rock located on ridge and Gogae located on hillside, and the Valley type into closed large and small valley, that is, Daegok and Sogok by the shape and size of the valley. The road systems are classified into outer road, approaching road, inner road, and side road. In San-rock type villages, Inner road is changed side roads by new arterial road, and new ones become inner road. The outer road are almost cut off, but side roads maintain. In the case of the Gogae type, main road becomes inner road, maintain old hierarchical road, and in other cases, villages are formed around side roads derived from main road, and outer road and inner road are cut off. Among the Valley type, Daegok type maintains old hierarchical road, while for Sogok type, outer roads are cut off, and new roads are outer road.

Rolling Characteristics of Towed Wheel with Tire Inflation Pressure on Off-Road (Off-road에서 타이어공기압에 따른 피구동륜의 구름 특성)

  • Park W. Y.;Lee H. J.;Hong J. H.;Chang Y. C.;Lee S. S.;Lee K. S.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.69-74
    • /
    • 2005
  • This study was carried out to investigate experimentally the effect of the ground condition and tire inflation pressure on rolling characteristics of towed wheel, including the deformation, sinkage, effective rolling radius and motion resistance of tire. The experiment was performed at soil bin for the three levels of off-road conditions(ground-I, ground-II and ground-III) and a on-road condition(ground-IV), and for the four levels of tire inflation pressure which were 80 kPa, 160 kPa, 240 kPa and 320 kPa. The results of this study are summarized as follows: 1. As the tire inflation pressure of towed wheel increased, the tire deformation decreased exponentially, but the tire sinkage increased exponentially. This trend was getting bigger as ground condition was getting softer. 2. The increase of tire inflation pressure increased the effective rolling radius of towed wheel, and this kind of trend occurred greatly as ground condition was soft. As a result, the effective rolling radius for the off-road condition was always larger than that for on-road condition. 3. For the on-road condition, as the tire inflation pressure of towed wheel increased, the motion resistance decreased, but for the off-road condition, augmentation of tire inflation pressure increased the motion resistance. Also, the effect of inflation pressure on motion resistance appeared great as ground condition was soft. Therefore, in order to improve the tire performance by the control of inflation pressure, it is desirable to reduce the tire inflation pressure for off-road condition and to increase the tire inflation pressure for on-road condition.

RESEARCH ON MODULARIZED DESIGN AND PERFORMANCE ASSESSMENT BASED ON MULTI-DRIVER OFF-ROAD VEHICLE DRIVING-LINE

  • Yi, J.J.;Yu, B.;Hu, D.Q.;Li, C.G.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.375-382
    • /
    • 2007
  • The multi-driver off-road vehicle drive-line consists of many components, with close connections among them. In order to design and analyze the drive-line efficiently, a modular methodology should be taken. The aim of a modular approach to the modeling of complex systems is to support behavior analysis and simulation in an iterative and thus complex engineering process, by using encapsulated submodels of components and of their interfaces. Multi-driver off-road vehicles are comparatively complicated. The driving-line is an important core part to the vehicle, it has a significant contribution to the performance. Multi-driver off-road vehicles have complex driving-lines, so performance is heavily dependent on the driving-line. A typical off-road vehicle's driving-line system consists of a torque converter, transmission, transfer case and driving-axles, which transfers the power generated by the engine and distributes it effectively to the driving wheels according to the road condition. According to its main function, this paper proposes a modularized approach for design and evaluation of the vehicle's driving-line. It can be used to effectively estimate the performance of the driving-line during the concept design stage. Through an appropriate analysis and assessment method, an optimal design can be reached. This method has been applied to practical vehicle design, it can improve the design efficiency and is convenient to assess and validate the performance of a vehicle, especially of multi-driver off-road vehicles.

Effect of Injection Timing and Injector Hole Number on Emission Characteristics for Off-road Diesel Engine (비도로용 디젤엔진의 분사시기 및 인젝터 변경에 따른 배출가스 특성 연구)

  • Kim, Hoon Myung;Kang, Jeong Ho;Han, Da Hye;Jung, Hak Sup;Pyo, Su Kang;Ahn, Jueng Kyu
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.2
    • /
    • pp.15-20
    • /
    • 2014
  • Environmental regulations are being reinforced for the solution of environmental pollution, that are global issues. Exhaust gas regulations of off-road engines also demand stepwise reduction emission from beginning of Tier 4 interim(2013). Characteristically, Tier 4 regulation apply the NRTC mode which is a transient cycle. And technical studies using NRTC mode are uncommon. In this study, for satisfy the Tier 4 final regulation on the NRTC mode, experimental study was conducted using a 3.4 L off-road engine. Fuel injection timing and injector hole number are chosen as parameters for investigation of combustion and exhaust gas characteristics on off-road diesel engine.

Study on the 3D Virtual Ground Modeling and Application for Real-time Vehicle Driving Simulation on Off-road (실시간 야지주행 시뮬레이션을 위한 3차원 가상노면의 구성 및 적용에 대한 연구)

  • Lee, Jeong-Han;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.92-98
    • /
    • 2010
  • Virtual ground modeling is one of key topic for real-time vehicle dynamic simulation. This paper discusses about the virtual 3D road modeling process using parametric surface concept. General road data is a type of lumped position vector so interpolation process is required to compute contact of internal surface. The parametric surface has continuity and linearity within boundaries and functions are very simple to find out contact point. In this paper, the parametric surface formula is adopted to road modeling to calculate road hight. Position indexing method is proposed to reduce memory size and resource possession, and a simple mathematical method for contact patch searching is also proposed. The developed road process program is tested in dynamic driving simulation on off-road. Conclusively, the new virtual road program shows high performance of road hight computation in vast field of off-road simulation.

Estimation of Greenhouse Gas Emission from Off-road Transportation (비도로 수송에 의한 온실 가스 배출량 추정)

  • Choi, Min ae;Kim, Jeong;Lee, Ho Jin;Jang, Young Kee
    • Journal of Climate Change Research
    • /
    • v.1 no.3
    • /
    • pp.211-217
    • /
    • 2010
  • Off-road transportation sector including construction equipment, ground support equipment in airport, cargo handling equipment and agroforestry machinery have not calculated as emission source classification in 1A3e2. In this study, the statistics of oil consumption for construction, aviation, shipping and agroforestry are separated for this sector by oil type. And the greenhouse gas emission by off-road transportation emission factor in 1996 & 2006 IPCC Guidelines are calculated and compared with each other. As a result, the nationwide $CO_2$ equivalent emission from off-road transportations by the emission factor of 1996 & 2006 IPCC Guidelines are calculated as 4,919 kton/yr and 5,530 kton/yr in 2007. The contribution ratio of off-road transportation emission by this study is estimated as 5.5% to the subtotal emission from on-road transport sector.

Compare Efficiency and Characteristics according to the WGT and VGT Application on the Off-road Engines (Off-road 엔진에서 WGT와 VGT장착에 따른 효율 및 특성 비교)

  • Shin, Jaesik;kang, Jungho;Ha, Hyeongsoo;Jung, Haksup;Pyo, Sukang
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.1-5
    • /
    • 2016
  • The aim of this study is to compare the effectiveness of turbo chargers on engines for off-road use when combined with WGT and VGT technologies. The effectiveness of turbo chargers was measured and performance was compared using a functional model. Exhaust characteristics were compared using WGT and VGT technologies through a gas analyzer. Results showed VGT technology was more effective at high RPM compared to WGT technology. When it came to maximising turbo performance, VGT was more effective than WGT in every test. WGT and VGT produced similar exhaust NOx levels, whereas the VGT was more effective on the PM.

Design of a Steering Control Mechanism for a Skateboard on Off-road Driving (비포장 노면 주행을 위한 스케이트보드의 조향제어기구 설계)

  • Sim Hansub
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.110-115
    • /
    • 2005
  • Driving performance is affected by a steering mechanism and characteristics of the ground at off-road skateboarding. In order to drive on off-road, it is necessary off-road wheel and high performance steering mechanism to adapt on various configuration of the ground. In this paper, design factors are studied to affect to steering radius such as inclination angle of a king-bolt, distance of a wheel axle, and rolling angle of a deck plate. A steering system is adhered to inclination face of the deck plate. And, inclination angle is existed between the king-bolt and the flat face of the deck plate. Therefore, the wheel axle of the steering system can be steered by control of the rolling angle of the deck plate.

Study on Optimization of Fuel Injection Parameters and EGR Rate of Off-road Diesel Engine by Taguchi Method (다구찌 방법을 적용한 Off-road 디젤 엔진의 분사조건 및 EGR 율 최적화에 관한 연구)

  • Ha, Hyeongsoo;Ahn, Juengkyu;Park, Chansu;Kang, Jeongho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.84-89
    • /
    • 2014
  • Not only the emission regulation of on-road vehicle engine, but also emission regulation of off-road engine have been reinforced. It is the reason of wide application of emission reduction technology for off-road engines. In this study, optimization of engine parameters (Injector hole number, Injection timing and EGR rate) for reduction of NOx and smoke emissions were conducted by using the analysis of sensitivity and S/N ratio of Taguchi method(DOE). As results, this paper shows optimum value of the parameters for NOx and smoke emission reduction. From the result of reproducibility verification, it is final that the prediction value of NOx and smoke has the error of below 10%. Consequently, the method and results of this study will be used for quantitative reference to EGR control mapping in next study.

Simulation Study on the Safety of a Fastening Device of Agricultural By-product Collector (동역학 시뮬레이션을 통한 농업부산물 수집기 체결장치의 안전성 분석)

  • Jeong-Hun Kim;Seok-Joon Hwang;Ju-Seok Nam
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.42-49
    • /
    • 2023
  • In this study, the safety of fastening device for the agricultural by-product collector was evaluated according to the driving ground conditions by deriving the stress, static safety factor, and fatigue life using dynamic simulation. A 3D modeling of agricultural by-product collector was carried out, and simulation model was developed by applying the material properties. As a result of dynamic simulation, the magnitude of the maximum stress generated in the fastening device was the highest when driving on the flat off-road, followed by sloped pave-road and flat pave-road. Static safety factor and fatigue life were the highest when driving on the flat pave-road, followed by sloped pave-road and flat off-road. The safety of fastening device was confirmed that static safety factor was more than 1.0 and service life exceeded 9 years in all driving ground conditions.