• Title/Summary/Keyword: Ofdma

Search Result 372, Processing Time 0.024 seconds

An Enhanced Frequency Synchronization Algorithm for 3GPP LTE FDD/TDD Dual Mode Downlink Receiver (3GPP LTE FDD/TDD 듀얼 모드 하향 링크 수신기를 위한 개선된 주파수 동기 알고리즘)

  • Shim, Myung-Jun;Jang, Jun-Hee;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.103-112
    • /
    • 2010
  • In this paper, we propose a coarse and fine frequency synchronization method which is suitable for the 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution) FDD(Frequency Division Duplexing) / TDD(Time Division Duplexing) dual mode system. In general, PSS(Primary Synchronization Signal) correlation based estimation method and CP(Cyclic Prefix) correlation based tracking loop are applied for coarse and fine frequency synchronization in 3GPP LTE OFDMA(Orthogonal Frequency Division Multiple Access) system, respectively. However, the conventional coarse frequency synchronization method has performance degradation caused by fading channel and squaring loss. Also, the conventional fine frequency synchronization method cannot guarantee stable operation in TDD mode because of signal power difference between uplink and downlink subframe. Therefore, in this paper, we propose enhanced coarse and fine frequency synchronization methods which can estimate more accurately in multi-path fading channel and high speed channel environments and has stable operation for TDD frame structure, respectively. By computer simulation, we show that the proposed methods outperform the conventional methods, and verify that the proposed frequency synchronization method can guarantee stable operation in 3GPP LTE FDD/TDD dual mode downlink receiver.

Delay Determination for Cyclic Delay Diversity for Block-Hopping SC-FDMA Systems (블록호핑 SC-FDMA 시스템을 위한 순환지연 다이버시티의 지연값 결정)

  • Rim, Min-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.72-82
    • /
    • 2009
  • In OFDMA systems, cyclic delay diversity can improve the system performance due to diversity effects. However, applying cyclic delay diversity to block-hopping SC-FDMA systems can affect the performance in two contrary ways: positive effect due to increased frequency diversity and negative effect caused by increased frequency selectivity. Hence, the delay value for cyclic delay diversity should be carefully selected to maximize the system performance. This paper discusses these two contrary effects and proposes a method of determining the delay value of cyclic delay diversity for block-hopping SC-FDMA systems.

Network Evolution Stages and Characteristics of LTE/LTE-Advanced Systems (LTE/LTE-Advanced 네트워크 발전단계 및 특성 - Network and Protocol Architectures)

  • Kim, Jeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.71-76
    • /
    • 2012
  • Recently, the huge growth of mobile data traffic has driven the earlier commercialization of LTE network and the evolution of LTE-Adv has been accelerated because of this trend of mobile traffic surges. Thus it has enabled the global connectivity and roaming capability due to continual standardization activities. The 3rd generation mobile communication system has been improved through incorporating technologies of HSDPA, MBMS and HSUPA etc continuously. Also, OFDMA/SC-FDMA-based LTE standardization has been under way. In this paper, the architectures of LTE network and protocol have been introduced and their inherent operation mechanisms have also been explored in order to give some insights about the LTE/LTE-Adv networks while their architectures are considered as most prominent candidate for worldwide standard by ITU-R and mobile operators for international communication networks.

A Comparison of Opportunnistic Transmission Schemes with Reduced Channel Information Feedback in OFDMA Downlink (순방향 직교 주파수분할 다중접속 시스템에서 부분적 채널정보 궤환을 이용한 전송방식의 비교분석)

  • Yoon, Seok-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.768-775
    • /
    • 2008
  • In this paper, we consider downlink throughput performances of multiuser orthogonal frequency division multiplexing with reduced channel information feedback schemes. Specifically, two types of reduced feedback schemes, namely, 1-bit per sub-carrier and selective feedback scheme are considered and compared with each other in terms of average network throughput. Since the strict throughput comparison for given number of feedback bits per user is quite difficult, rather we compare their general behaviors in various system configurations with different system parameters, which can give us an insight into practical system design with those reduced feedback schemes.

Analytical Evaluation of Almost Blank Subframes for Heterogeneous Networks (이종 네트워크를 위한 Almost Blank Subframes의 성능 분석)

  • Kim, Seung-Yeon;Lee, Hyong-Woo;Ryu, Seung-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.4
    • /
    • pp.240-246
    • /
    • 2013
  • In heterogeneous networks, the almost blank subframes (ABS) for inter-cell interference coordination (ICIC), which can be protected from the CCI due to unutilized subframes (i.e., ABS) is proposed. However, the analytical model for ABS-based systems has not been fully studied yet. In this paper, we derive a new analytical model to evaluate the performance of ABS-based systems. In an analytic model, we assume that each carrier in multicarrier systems, such as in OFDMA, is subject to large-scale fading, which is independent of other carriers. As a performance measure, we present the cumulative distribution function (CDF) for the effective SINR. We show the accuracy of the analytical model via simulation results.

Dynamic Channel Assignment Scheme Using Graph Coloring in Femtocell Networks (펨토셀 네트워크에서 그래프 컬러링을 이용한 동적채널할당 방법)

  • Kim, Se-Jin;Cho, IlKwon;Kim, Yi-Kang;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.4
    • /
    • pp.257-265
    • /
    • 2013
  • In this paper, we proposed a Dynamic Channel Assignment (DCA) scheme called Graph Coloring based DCA (GC-DCA) to improve system performance for downlink femtocell networks with high density femto Access Point (AP) deployments. The proposed scheme consists of two steps: one is a femto AP grouping step considering interference and the other is a DCA step considering Signal to Interference plus Noise Ratio (SINR) for femto User Equipments (UEs). Simulation results show that the proposed GC-DCA outperforms other schemes in terms of the mean femto UE capacity and probability of femto UEs which have capacities less than a given transmit rate.

A New Reduction Method of the Uplink Information for an Adaptive Modulation and Coding OFDM/FDD System (다중 사용자를 위한 적응형 OFDM/FDD 시스템의 상향링크 정보 축소 방안)

  • 장일순;유병한;조경록
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2A
    • /
    • pp.140-146
    • /
    • 2004
  • In this paper we proposed the reducing method of feedback information for transmitting of adaptable data rate in multi-user OFDMA/FDD systems. In order to transmit downlink channel information to Base-Station(BS) through the limited uplink control channel, the proposed algorithm exploits the channel variation level which describes the similarity among the adjacent clusters and uses just one modulation and coding scheme(MCS) level representing channel information of all clusters'. We investigated the performance in single cell environment. It has a similar overhead for feedback information with conventional algorithm and has better performance in that bandwidth efficiency and outage probability than the conventional algorithms.

Multi-Cluster based Dynamic Channel Assignment for Dense Femtocell Networks

  • Kim, Se-Jin;Cho, IlKwon;Lee, ByungBog;Bae, Sang-Hyun;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1535-1554
    • /
    • 2016
  • This paper proposes a novel channel assignment scheme called multi-cluster based dynamic channel assignment (MC-DCA) to improve system performance for the downlink of dense femtocell networks (DFNs) based on orthogonal frequency division multiple access (OFDMA) and frequency division duplexing (FDD). In order to dynamically assign channels for femtocell access points (FAPs), the MC-DCA scheme uses a heuristic method that consists of two steps: one is a multiple cluster assignment step to group FAPs using graph coloring algorithm with some extensions, while the other is a dynamic subchannel assignment step to allocate subchannels for maximizing the system capacity. Through simulations, we first find optimum parameters of the multiple FAP clustering to maximize the system capacity and then evaluate system performance in terms of the mean FAP capacity, unsatisfied femtocell user equipment (FUE) probability, and mean FAP power consumption for data transmission based on a given FUE traffic load. As a result, the MC-DCA scheme outperforms other schemes in two different DFN environments for commercial and office buildings.

Scheduling Methods for Multi-User Optical Wireless Asymmetrically-Clipped OFDM

  • Wilson, Sarah Kate;Holliday, Joanne
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.655-663
    • /
    • 2011
  • Diffuse optical wireless (DOW) systems have the advantage that they do not require point-to-point siting so one transmitter can communicate with several receivers. In this paper, we investigate multiple access scheduling methods for downlink orthogonal frequency division multiplexing (OFDM) in diffuse optical wireless networks. Unlike the radio frequency (RF) channel, the DOW channel has low-pass filter characteristics and so requires different scheduling methods than those developed for the RF channel. Multi-user diversity orthogonal frequency division multiple access (OFDMA) systems nominate a cluster of subcarriers with the largest signal-to-noise-ratio for transmission. However, in a DOW channel, most users would choose the lowest frequency clusters of subcarriers. To remedy this problem, we make two proposals. The first is to use a variable cluster size across the subcarriers; the lower frequency clusters will have fewer subcarriers while the higher frequency clusters will have more subcarriers. This will equalize the capacity of the clusters. The second proposal is to randomize a user's cluster selection from a group of clusters satisfying a minimum threshold. Through simulation it is shown that combining these strategies can increase the throughput while ensuring a fair distribution of the available spectrum.

Design and Performance Evaluation of Cooperative Hybrid CDD Scheme in OFDMA Up-link Network (OFDMA 상향링크 네트워크에서 협력 하이브리드 기법의 설계 및 성능 평가)

  • Kim, Dae-Hwan;Song, Hyoung-Kyu;Cho, We-Duke
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7C
    • /
    • pp.435-442
    • /
    • 2011
  • The MIMO has weak points such as size and cost of systems and the complexity of hardware augment. Thus, the cooperative transmission techniques have been recently discussed briskly and it also solves problems by increase of shadowy area. However, limited cooperation scheme is utilized due to a single-antenna at the destination. The base station is simply equipped with multiple antennas. When the base station has multiple antennas, cooperative diversity and multiplexing schemes can be easily applied in the base station. To guarantee reliability with high throughput, a cooperative hybrid cyclic relay diversity transmission scheme is proposed which can use an arbitrary number of relays without rate loss and a modification of the base station. The presented results show that the proposed schemes can be effectively applied to the existing various MIMO-OFDM communication system.