• Title/Summary/Keyword: Ofdm Signals

Search Result 199, Processing Time 0.026 seconds

Physical Layer Issues in Vehicular Communications (차량통신에서의 물리계층 이슈)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1229-1234
    • /
    • 2012
  • Vehicular communications have been receiving much attention in intelligent transport systems (ITS) by combining communication technology with automobile industries. In general, vehicular communications can be used for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication by adopting IEEE802.11p/1609 standard which is commonly known as wireless access in vehicular environments (WAVE). WAVE system transmits signal in 5.9GHz frequency band with orthogonal frequency division multiplexing (OFDM) signaling. In this paper, we consider physical layer issues in vehicular communications. We first overview the physical (PHY) layer of WAVE standard and properties of 5.9GHz signals, and then physical layer issues to provide reliable communication link are discussed.

Performance Analysis of Dedicated Short Range Communication System on the Rician Fading Channel (라이시안 페이딩 환경에서 단거리전용통신(DSRC) 시스템의 성능 분석)

  • Kim, Man-Ho;Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • In this paper, we investigated performance for 5.8GHz dedicated short range communication system using OFDM which will be applied to Intelligent transportation system services. The maximum speed of a vehicle in DSRC channel is very fast as 180km/h, so a service time is very short to serve a various traffic information if hand-off is not occurred. Therefore higher bit rate is required to proved advanced and intelligent service to the drivers of various vehicle and the data transmission rate of the next generation DSRC system if being promoted over 10Mbps. The signals received in Racian channel have been simulated using the computer simulator. For performance improvement, BCH coding scheme are adopted.

  • PDF

Design and Performance Analysis of Pre-Distorter Including HPA Memory Effect

  • An, Dong-Geon;Lee, Il-Jin;Ryu, Heung-Gyoon
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.2
    • /
    • pp.71-77
    • /
    • 2009
  • OFDM(Orthogonal Frequency Division Multiplexing) signals sutler serious nonlinear distortion in the nonlinear HPA(High Power Amplifier) because of high PAPR(Peak Average Power Ratio). Nonlinear distortion can be improved by a pre-distorter, but this pre-distorter is insufficient when the PAPR is very high in an OPFDM system. In this paper, a DFT(Discrete Fourier Transform) transform technique is introduced for PAPR reduction. It is especially important to consider the memory effect of HPA for more precise predistortion. Therefore, in this paper, we consider two models, the TWTA(Traveling-Wave Tube Amplifier) model of Saleh without a memory effect and the HPA memory polynomial model that has a memory effect. We design a pre-distorter and an adaptive pre-distorter that uses the NLMS(Normalized Least Mean Square) algorithm for the compensation of this nonlinear distortion. Without the consideration of a memory effect, the system performance would be degraded, even if the pre-distorter is used for the compensation of the nonlinear distortion. From the simulation results, we can confirm that the proposed system shows an improvement in performance.

Estimation Technique of Time Difference of Acoustic Signal in Underwater Environments (수중 환경에서의 음향 신호의 시간 차이 추정 기법)

  • Lee, Young-Pil;Moon, Yong-Seon;Ko, Nak-Yong;Choi, Hyun-Taek;Lee, Jeong-Gu;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.253-262
    • /
    • 2016
  • Recently, UWAC (underwater acoustic communication) has been studied by many scholars and researchers. DS-CDMA, OFDM (orthogonal-frequency division multiplexing), and MIMO (multi-input multi-output), modulation and error correction, and others techniques that can transmit high-speed data are used in UWAC. In this paper, we first briefly present the theoretical background of estimating the arrival time of the first non-background segment in both signals and calculate the temporal difference. We also present the initial experimental result of estimating the arrival time.

Notch Filter Design for Power Line Communication based on OFDM (OFDM 기반 전력선 통신을 위한 Notch Filter 설계)

  • Lee, Hyun-So;Lee, Young-Hwan;Jang, Dong-Won;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.3
    • /
    • pp.58-71
    • /
    • 2009
  • Today is the Information age which Internet service acts a most important Information Source. So A Power Line Communication has been achieved to offer Internet service for Last-Mile area. And Research is achieved to frequence range from 30MHz to 80MHz for High-speed communication service. But, Power Line is not suitable for communication, so, electric wave is generated from flow of communication information. And the electric wave is interfered with Wireless Communication Service using the same frequence range. In this paper, we calculated a 3 steps and 8 steps dynamic Notch Filter to consider the bandwidth of interference signals based on ETSI standard for reduce of interference between Power Line Communication and Wireless Communication Service. And we applied a Notch Filter and verified the application performance from Spectrum and BER.

Selected Mapping without Side Information at the Receiver (수신기에서 부가정보가 필요 없는 Selected Mapping 기법)

  • Jang, Chanki;Yoon, Eunchul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1710-1718
    • /
    • 2015
  • Selected mapping (SLM) is an effective scheme to reduce the peak to average power ratio (PAPR) of an orthogonal frequency division multiplexing (OFDM) system. For data recovery, the receiver needs to know the side information (SI) on the scrambling sequence selected by the transmitter. In this paper, a new SLM scheme is proposed, which can reduce implementation complexity substantially by allowing the receiver to recover the data without SI. In the proposed SLM method, the concept of virtual channel corresponding to the convolution of the multipath channel and the inverse discrete fourier transform (IDFT) of the scrambling sequence is assumed. The receiver can recover the data without SI by using the virtual channel estimated with pilot signals. It is shown by simulation that the proposed SLM has PAPR reduction and BER performances similar to the previous SLM schemes while it can reduce implementation complexity substantially.

Reducing PAPR of OFDM Signals Using Modified Partial Transmit Sequences Technique Based on Erasure Decoding (소실 복호 기반의 수정된 PTS 기법을 이용한 OFDM 신호의 PAPR 감소)

  • Kong, Min-Han;Song, Moon-Kyou
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.775-781
    • /
    • 2007
  • In this paper, a modified PTS(Partial Transmit Sequences) technique that uses erasure decoding of RS (Reed-Solomon) codes is presented. At the transmitter, some check symbols in a RS codeword partitioned into subblocks are phase-rotated by phase factors. The receiver decodes received codewords by regarding the phase-rotated check symbols as erasures. Hence, this technique does not need to transmit the side information about the phase factors chosen at the transmitter. The complexity of the receiver is also reduced since the estimation process for the phase factors is not required in the receiver. There is no performance degradation due to the transmission error of the side information or the estimation error of the phase factors. To evaluate the performance of the proposed PTS technique, the CCDF(Complementary Cumulative Distribution Function) of PAPR and the BER(Bit Error Rate) are compared with those of the conventional PTS techniques.

Channel Prediction based Adaptive Channel Tracking cheme in MIMO-OFDM Systems with Null Sub-carriers (Null 부반송파를 갖는 MIMO-OFDM에서 채널 예측 기반적응 채널 추적 방식)

  • Jeon, Hyoung-Goo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.556-564
    • /
    • 2007
  • This paper proposes an efficient scheme to track a time variant channel induced by multi-path Rayleigh fading in mobile MIMO-OFDM systems with null sub-carriers. The proposed adaptive channel tracking scheme removes in the frequency domain the interfering signals of the other transmit (Tx) antennas by using a predicted channel frequency response before starting the channel estimation. Time domain channel estimation is then performed to reduce the additive white Gaussian noise (AWGN). The simulation results show that the proposed method is better than the conventional channel tracking method [3] in time varying channel environments. At a Doppler frequency of 300 Hz and bit error rates (BER) of 10-3, signal-to-noise power ratio (Eb/N0) gains of about 2.5 dB are achieved relative to the conventional channel tracking method [3]. At a Doppler frequency of 600 Hz, the performance difference between the proposed method and conventional one becomes much larger.

Performance Evaluation of a Peak Windowing-Based PAPR Reduction Scheme in OFDM Polar Transmitters (OFDM polar transmitter에서 피크 윈도잉 기반의 PAPR 감소기법의 성능평가)

  • Seo, Man-Jung;Shin, Hee-Sung;Im, Sung-Bin;Jung, Jae-Ho;Lee, Kwang-Chun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.42-48
    • /
    • 2008
  • Next generation wireless communication systems require RF transceivers that enable multiband/multimode operations. Polar transmitters are known as good candidates for high data rate systems such as EDGE (Enhanced Data Rates for GSM Evolution), WCDMA (Wideband Code Division Multiple Access), and WLAN (Wireless Local Area Network) because they can obtain high efficiency by using efficient switched-mode RF power amplifiers. In this paper, we investigate the performance of a simple peak windowing scheme for the OFDM (Orthogonal frequency Division Multiplexing) polar transmitter, which requires no change of a receiver structure or no additional information transmission. The approach we employed is to apply the peak windowing scheme to the amplitude modulated signals of the polar transmitter to reduce the PAPR (Peak-to-Average Power Ratio). The BER (Bit Error Rate) and EVM (Error Vector Magnitude) performances are measured for various window types and lengths. The simulation results demonstrate that the proposed algorithm mitigates out-of-band distortion introduced by clipping along with PAPR reduction.

Performance Comparison of Taylor Series Approximation and CORDIC Algorithm for an Open-Loop Polar Transmitter (Open-Loop Polar Transmitter에 적용 가능한 테일러 급수 근사식과 CORDIC 기법 성능 비교 및 평가)

  • Kim, Sun-Ho;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.9
    • /
    • pp.1-8
    • /
    • 2010
  • A digital phase wrapping modulation (DPM) open-loop polar transmitter can be efficiently applied to a wideband orthogonal frequency division multiplexing (OFDM) communication system by converting in-phase and quadrature signals to envelope and phase signals and then employing the signal mapping process. This mapping process is very similar to quantization in a general communication system, and when taking into account the error that appears during mapping process, one can replace the coordinates rotation digital computer (CORDIC) algorithm in the coordinate conversion part with the Taylor series approximation method. In this paper, we investigate the application of the Taylor series approximation to the cartesian to polar coordinate conversion part of a DPM polar transmitter for wideband OFDM systems. The conventional approach relies on the CORDIC algorithm. To achieve efficient application, we perform computer simulation to measure mean square error (MSE) of the both approaches and find the minimum approximation order for the Taylor series approximation compatible to allowable error of the CORDIC algorithm in terms of hardware design. Furthermore, comparing the processing speeds of the both approaches in the implementation with FPGA reveals that the Taylor series approximation with lower order improves the processing speed in the coordinate conversion part.