• Title/Summary/Keyword: Odor removal

Search Result 229, Processing Time 0.024 seconds

Characterization of the Bacterial Community Associated with Methane and Odor in a Pilot-Scale Landfill Biocover under Moderately Thermophilic Conditions

  • Yang, Hyoju;Jung, Hyekyeng;Oh, Kyungcheol;Jeon, Jun-Min;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.803-814
    • /
    • 2021
  • A pilot-scale biocover was constructed at a sanitary landfill and the mitigation of methane and odor compounds was compared between the summer and non-summer seasons. The average inlet methane concentrations were 22.0%, 16.3%, and 31.3%, and the outlet concentrations were 0.1%, 0.1%, and 0.2% during winter, spring, and summer, respectively. The odor removal efficiency was 98.0% during summer, compared to 96.6% and 99.6% during winter and spring, respectively. No deterioration in methane and odor removal performance was observed even when the internal temperature of the biocover increased to more than 40℃ at midday during summer. During summer, the packing material simultaneously degraded methane and dimethyl sulfide (DMS) under both moderately thermophilic (40-50℃) and mesophilic conditions (30℃). Hyphomicrobium and Brevibacillus, which can degrade methane and DMS at 40℃ and 50℃, were isolated. The diversity of the bacterial community in the biocover during summer did not decrease significantly compared to other seasons. The thermophilic environment of the biocover during summer promoted the growth of thermotolerant and thermophilic bacterial populations. In particular, the major methane-oxidizing species were Methylocaldum spp. during summer and Methylobacter spp. during the non-summer seasons. The performance of the biocover remained stable under moderately thermophilic conditions due to the replacement of the main species and the maintenance of bacterial diversity. The information obtained in this study could be used to design biological processes for methane and odor removal during summer and/or in subtropical countries.

A Study on the Odor Removal Characteristics of sewage sludge using Bacillus sp. (바실러스균을 이용한 하수 슬러지의 악취 제거 특성에 대한 연구)

  • Sung, Il-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.1-8
    • /
    • 2016
  • This study assessed the feasibility of odor removal by the application of Bacillus sp. that has many advantages in sewage treatment to sewage sludge. The NH3 removal rates in the treatment of primary sludge using only aeration were measured at 24, 48, and 72 hours of treatment and the results were 12.5 %, 12 %, and 42.1 %, respectively. The NH3 removal rates of a reactor injected with BIO-CLOD made by solidifying Bacillus sp. concentrated 10 % together with other substances were measured after 24, 48, and 72 hours of treatment and the results were 43 %, 70 %, and 81 % respectively. In the cases where the Bacillus sp. cultured in NB medium was injected into the primary sludge reactor to reach injection rates of 0 %, 1.7 %, 3.3 %, and 6.7(v/v%), the TVOC removal rates measured when 72 hours had passed after the injection were 59 %, 71 %, 88 %, and 98 % respectively, which were higher than the NH3 removal rates as the NH3 removal rates measured at the same time were shown to be 29 %, 25 %, 31 %, and 48 %, respectively. In the sludge dewaterability conducted with various Bacillus sp. injection concentrations, a Bacillus sp. concentration of 4(v/v%) was considered to be suitable. The Bacillus sp. concentrations and reduction in the bad odor substances were correlated with each other. The results showed that aeration and Bacillus sp. injection will assist biological oxidation so that the bad odor substances can be removed. Based on the SRF values of the primary sludge and digested sludge, in which Alum and PAC were used, the appropriate amount of Alum aggregate reagent was judged to be 500 mg/L, and when PAC was used, 6 mg/L was judged to be appropriate.

A Test of Relative Removal Properties of Various Offensive Odors by Zeolite

  • Adelodun, Adedeji A.;Vellingiri, Kowsalya;Jeon, Byong-Hun;Oh, Jong-Min;Kumar, Sandeep;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.15-28
    • /
    • 2017
  • The adsorptive removal properties of synthetic A4 zeolite were investigated against a total of 16 offensive odors consisting of reduced sulfur compounds (RSCs), nitrogenous compounds (NCs), volatile fatty acids (VFAs), and phenols/indoles (PnI). Removal of these odors was measured using a laboratory-scale impinger-based adsorption setup containing 25 g of the zeolite bed (flow rate of $100mL\;min^{-1}$). The high est and lowest breakthrough (%) values were shown for PnIs and RSCs, respectively, and the maximum and minimum adsorption capacity (${\mu}g\;g^{-1}$) of the zeolite was observed for the RSCs (range of 0.77-3.4) and PnIs (0.06-0.104), respectively. As a result of sorptive removal by zeolite, a reduction in odor strength, measured as odor intensity (OI), was recorded from the minimum of approximately 0.7 OI units (indole [from 2.4 to 1.6]), skatole [2.2 to 1.4], and p-cresol [5.1 to 4.4]) to the maximum of approximately 4 OI units (methanethiol [11.4 to 7.5], n-valeric acid [10.4 to 6.5], i-butyric acid [7.9 to 4.4], and propionic acid [7.2 to 3.7]). Likewise, when removal was examined in terms of odor activity value (OAV), the extent of reduction was significant (i.e., 1000-fold) in the increasing order of amy acetate, i-butyric acid, phenol, propionic acid, and ammonia.

Air stripping of odor causing materials from eutrophic lake water (부영양호 원수의 냄새유발 물질 탈기 특성)

  • Park, Noh-Back;Song, Yong-Hyo;Na, Gywang-Joo;Park, Sang-Min;Jun, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.5
    • /
    • pp.523-529
    • /
    • 2008
  • Algal blooms in a local eutrophic lake often produces the musty and earthy taste & odor problems. Since the odor causing compounds(OCCs) including geosmin and 2-MIB have their own volatility, the OCCs can be removed from water by air stripping methods. Removal of TON(threshold odor number) as an index for OCCs could be fitted well with the first order equations($R^2=0.9$ above), where the air stripping coefficient of TON, k was in the range between 0.0055 and 0.0097 according to the aeration time. k within 30min aeration tests was 0.0097, while it was 0.0055 where the aeration time extended to 150min. With 15 mg/L of PAC, removal of TON was not simulated with 1st order equation within 30min aeration. Within 30min aeration, OCCs rather than geosmin and/or 2-MIB could be removed easily by air stripping or PAC adsorption, while OCCs such as geosmin and/or 2-MIB could be removed slowly by air stripping after 30min aeration. Geosmin and 2-MIB were not readily removed by air stripping(k of them were 0.0018~0.0047 and 0.0018~0.0034, respectively at different air flow rates). Geosmin could be removed by air stripping a little better than 2-MIB.

A study on the Effect of SOB(Sulfur-Oxidizing Bacteria) Media on the Removal of Hydrogen Sulfide in Water of Septic Tank (SOB(Sulfur Oxidizing Bacteria) Media가 정화조의 수중황화수소 제거에 미치는 영향에 관한 연구)

  • Song, Homyeon;Cho, Jeongil;Kim, Taeksoo;Kwon, Sucheol;Yu, Hyeongsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.59-67
    • /
    • 2013
  • The odor occurring in the sewage system induces the displeasure, the disgust such as the headache, the vomit, etc. and increases the spiritual stress and disturbs the pleasant life of residents. These odors occur mainly in the area of combined sewage system treatment, being created in the personal sewage treatment plant such as septic tank and are incoming to sewage pipes and emitted to the outside through the manhole and the receiver, etc.; and this causes odors to the people. The Hydrogen Sulfide, the Methyl Mercaptan, the Ammonia, etc. are materials causing the odor, the more serious issue of odor is occurring since the septic tank of degradation process is being applied. The primary cause of odor is the decomposition of human feces in the septic tanks and sewage disposal facilities. The purpose of this study is reduction of hydrogen sulfide using air supplying and SOB(Sulfur-Oxidizing Bacteria). As a result of this study of the air supply system and the SOB media equipment by air supply, in case the air is injected to SOB media compared to the injection of air only, the removal efficiency the hydrogen sulfide was average 3.4 times higher.

Developmemt of Rice Husk Pellets as Bio-filter Media of Bio Scrubber Odor Removal System (왕겨펠렛 생물담체 개발 및 이를 이용한 bio scrubber형 악취제거 시스템 성능평가)

  • Bae, Jiyeol;Han, Sangjong;Park, Ki Ho;Kim, Kwang-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.554-566
    • /
    • 2018
  • The rice husk contains nutrients which can be easily utilized by microorganisms, and also has a water retaining ability, which played a crucial part in enabling it to become a biofilter media. In this study, we evaluated the applicability of rice husk pellet bio-scrubber as a microbiological carrier. The pelletization experiment of rice husk as a biological media was performed using PVA and EVA binder. Also, the feasibility tests of rice husk as a biological media for odor removal were carried out in order to know whether rice-husk contains useful components as a media for microbiological growth or not. Lastly, a combined test for odor gas absorption and biological oxidation was conducted using a lab scale bio-filter set-up packed with rice-husk pellets as wet-scrubber. The major components of the rice husk were carbon, hydrogen, nitrogen, and oxygen, while carbon acted as the main ingredient which comprised up to 23.00%. The C : N : P ratio was calculated as 45 : 1 : 2. Oxygen uptake rate, yield and decay rate of the rice husk eluent was calculated to be $0.0049mgO_2/L/sec$, 0.24 mgSS/mgCOD and 0.004 respectively. The most stable form of rice husk pellets was produced when the weight of the rice husk, EVAc, PVAc, and distilled water was 10 : 2 : 0.2 : 10. The prepared rice husk pellets had an apparent density of 368 g/L and a porosity of 59.00% upon filling. Dry rice husks showed high adsorption capacity for ammonia gas but low adsorption capacity for hydrogen sulfide. The bio-filter odor removal column filled with rice husk pellets showed more than 99.50% removal efficiency for NH3 and H2S gas. Through the analysis of circulation water, the prime removal mechanism is assumed to be the dissolution by water, microbial nitrification, and sulfation. Finally, it was confirmed that the microorganisms could survive well on the rice husk pellets, which provided them a stable supply of nutrients for their activity in this long-term experiment. This adequate supply of nutrients from the rice husk enabled high removal efficiency by the microorganisms.

A Study on the Odor Removal Control System of Sewage Sludge

  • KIM, Su-Hye;LEE, So-Hee;YUN, Yeo-Jin;CHOI, Soo-Young;JUNG, Min-Jae;KWON, Woo-Taeg
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.4 no.2
    • /
    • pp.19-25
    • /
    • 2021
  • Purpose: The purpose of this study is to reduce odor complaints by identifying problems with odor management at the site of the water regeneration center and researching odor management methods. Due to the high population density of Korea, sewage treatment facilities are adjacent to residential and industrial areas. According to previous studies, the main malodor-emitting facilities of sewage treatment facilities were preliminary treatment facilities (2,220 times), sedimentation basins (4,628 times), and sludge treatment facilities (9,616 times). Research design, data and methodology: Compound malodors and designated malodor-producing substances were collected from five site boundaries of the water regeneration center and analyzed according to the official methods to test malodor, and a total of two times (August and September 2020) were conducted. Results: As a result of the measurement, in the green area in front of the center office, compound malodors were detected at a maximum of 8 times and at least 3 times during the dawn time. As for the designated malodor-producing substances, 0.1ppm of ammonia was detected in the green area in front of the center office and the park golf course. This is within 15 times the maximum allowable emission level of compound malodors and within 1ppm of the maximum allowable emission level of ammonia. Conclusions: Even if the dilution rate of the compound malodors did not exceed the maximum allowable emission level, the odor could be recognized, and more research is needed in the future to establish effective reduction measures according to the subjective and individual and seasonal odor characteristics.

A Case Study for Reasonable Emission Regulation of Odor Exhaust Stack (악취 배출구의 합리적인 배출규제를 위한 사례연구)

  • Park, Jeong-Ho;Lee, Hyung-Chun
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.155-161
    • /
    • 2016
  • In this study, field experiment, odor simulator, and dispersion modeling were used to evaluate the odor impact from J sewage sludge treatment facility. The height and flow rate of exhaust stack at this facility were 22.3 m and $100Nm^3/min$. The mean odor concentrations of the wet scrubber inlet and exhaust stack were $267{\pm}160$ and $93{\pm}44OU/m^3$, respectively. The odor removal efficiency of wet scrubber showed 65%. The odor simulator is used for the regulated standard calculation of the exhaust pipe(stack). Resulting odor emission rate(OER) by odor simulator was $2.4{\times}10^6(24,000OU/m^3)$. The forecasting result by Screen3 modeling showed that odor exhaust concentration up to $30,000OU/m^3$ was't exceeded maximum allowable emission level on site boundary($15OU/m^3$).

The Study on the Removal of Odor Emitting Environmental Fundamental Facility (환경기초시설에서 발생하는 악취가스 제거에 관한 연구)

  • Lee, Byung-Kwan;Lee, Sang-Hun;Tak, Sung-Je;Lee, Byung-Ki
    • Journal of Climate Change Research
    • /
    • v.8 no.1
    • /
    • pp.51-56
    • /
    • 2017
  • The objective of the research project is to develop the hybrid deodorizer for the removal of residual harmful gases generating during pretreatment process of biogas. This hybrid deodorizer is capable of treating harmful gases that contains hydrogen sulfide ($H_2S$), ammonia ($NH_3$) and other odor substances. This hybrid deodorizer reduced the hydrogen sulfide content from approximately 150~200 ppm to less than 16 ppm. These residual harmful gases were effectively removed in the effluent, achieving up to 97% removal of $H_2S$ and 94% removal of $NH_3$ after treatment using hybrid deodorizer.

Removal of nitrogen and sulfur odorous compounds and their precursors using an electrolytic oxidation process (산화전리수를 이용한 질소와 황 계열 악취 및 악취전구물질의 제거)

  • Shin, Seung-Kyu;An, Hea-Yung;Kim, Han-Seung;Song, Ji-Hyeon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.223-230
    • /
    • 2011
  • An electrolytic oxidation process was applied to remove odorous compounds from non-point odor sources including wastewater pipelines and manholes. In this study, a distance between the anode and the cathode of the electrolytic process was varied as a system operating parameters, and its effects on odor removal efficiencies and reaction characteristics were investigated. Odor precursors such as sediment organic matters and reduced sulfur/nitrogen compounds were effectively oxidized in the electrolytic process, and a change in oxidation-reduction potential (ORP) indicated that an stringent anaerobic condition shifted to a mild anoxic condition rapidly. At an electrode distance of 1 cm and an applied voltage of 30 V, a system current was maintained at 1 A, and the current density was 23.1 $mA/cm^{2}$. Under the condition, the removal efficiency of hydrogen sulfide in gas phase was found to be 100%, and 93% of ammonium ion was removed from the liquid phase during the 120 minute operating period. Moreover, the sulfate ion (${SO_4}^{2-}$) concentration increased about three times from its initial value due to the active oxidation. As the specific power consumption (i.e., the energy input normalized by the effective volume) increased, the oxidation progressed rapidly, however, the oxidation rate was varied depending on target compounds. Consequently, a threshold power consumption for each odorous compound needs to be experimentally determined for an effective application of the electrolytic oxidation.