• Title/Summary/Keyword: Odor emission

Search Result 136, Processing Time 0.023 seconds

Effects of Dietary Lactobacillus brevis Supplementation on Growth Performance, Dry Matter and Nitrogen Digestibilities, Blood Cell Counts and Fecal Odor Emission Compounds in Growing Pigs (육성돈사료에 Lactobacillus brevis의 첨가가 성산성, 건물과 질소 소화율, 혈구수 및 분 내 악취 발생 물질에 미치는 영향)

  • 진영걸;민병준;조진호;김해진;유종상;김인호
    • Journal of Animal Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.503-512
    • /
    • 2006
  • This study was conducted to investigate the effects of dietary Lactobacillus brevis (3.4×108 CFU/g) supplementation on growth performance, DM and N digestibilities, blood cell counts and fecal odor emission compounds in growing pigs. Ninety six crossbred [(Landrace×Yorkshire)×Duroc] pigs with an initial BW of 24.60±1.28kg were used for 42-d feeding trial according to a completely randomized design. Three corn- soybean meal based dietary treatments included: 1) CON (basal diet); 2) LB1 (basal diet + Lactobacillus brevis 0.2%) and 3) LB2 (basal diet+Lactobacillus brevis 0.4%). There were three dietary treatments with eight replicate pens per treatment and four pigs per pen. Through the entire experimental period, ADG, ADFI and gain/feed had no significant differences among treatments(P>0.05). Nitrogen digestibility was increased in LB1 and LB2 treatments compared to CON treatment (linear effect, P<0.05), however, DM digestibility had no significant difference among all the treatments (P>0.05). The WBC, RBC and lymphocyte concentrations in whole blood were not affected by treatments (P>0.05). Fecal NH3N and H2S concentrations were significant decreased in LB2 treatment compared to CON treatment (linear effect, P<0.05). Fecal VFA (acetic acid and propionic acid) concentration was also reduced in LB2 treatment compared to CON treatment (linear effect, P<0.05). In conclusion, Lactobacillus brevis (3.4×108 CFU/g) supplementation at the level of 0.4% can improve nitrogen digestibility and decrease the concentrations of fecal odor emission compounds in growing pigs.

Integration of Geographic Information System and Air Dispersion Model (지리정보체계와 대기확산의 통합)

  • Kim, Myung-Jin;Han, Eui-Jung;Kang, In-Goo;Kim, Jeong-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.5 no.1
    • /
    • pp.61-67
    • /
    • 1996
  • Environmental Impact Assessment (EIA) in Korea has worked toward environmental conservation and decision making since the Environmental Impact Statement of 1981. In order to implement the EIA process effectively, we have developed a system for and various methods of EIA. Among these methods, the Geographic Information System (GIS), which was introduced recently in Korea, can be used to integrate geographic and attribute data effectively. So GIS begins to increase the necessity of the application in EIA process. This study includes the integration method of the GIS and air dispersion model on the odor impact assessment of $NH_3$ emission in landfill sites. First, it computes surface values by grids using the Digital Elevation Model (DEM). Second, it presents predicted data considering topography and climate by grids. Third, it shows the overlaying analysis of the administrative map including population and odor predictive data. The results could systematically analyze impact areas, and assess residential impact by alternatives. Integration analysis of the air predictive model and GIS as a residential area assessment can support negotiations of public and proponent in EIA.

  • PDF

Effect of organic medicinal charcoal supplementation in finishing pig diets

  • Kim, Kwang Sik;Kim, Yeung-Hwa;Park, Jun-Ceol;Yun, Won;Jang, Keum-Il;Yoo, Do-Il;Lee, Dong-Hoon;Kim, Beom-Gyu;Cho, Jin-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.1
    • /
    • pp.50-59
    • /
    • 2017
  • This study was performed to evaluate the effect of organic medicinal charcoal as a feed additive on aflatoxin absorption, odor emission, fecal microflora and in vitro digestibility in pig diet. A 10-day trial was conducted with 20 [(Yorkshire ${\times}$ Landrace) ${\times}$ Duroc] finishing pigs ($BW=81{\pm}3.3kg$) to investigate the population of Lactobacillus and E. coli in feces and fecal odor ($NH_3$, $H_2S$, total mercaptans, and Acetic acid) in vivo. The in vitro and in vivo treatments included: control (basal diet; CON); (basal diet + 0.25% Organic Medicinal Charcoal; OMC); (basal diet + 0.50% Pyroligneous Charcoal; PC); and (basal diet + 0.50% Coconut tree Charcoal; CC). The aflatoxin absorption capacity was 100, 10, and 20% in OMC, PC, and CC, respectively. The digestibility of dry matter in OMC was significantly higher than that of CON, PC, or CC in vitro (p < 0.05). The digestibility of organic matter in OMC was found to be significantly different from that of CON (p < 0.05). Fecal ammonia and $H_2S$ emissions of OMC were observed to be significantly lower than those of CON, PC, and CC (p < 0.05). Lactobacillus counts in feces of OMC and CC were significantly higher than those of CON and PC (p < 0.05). Fecal E. coli counts of OMC and CC were lower than those of CON and PC (p < 0.05). It was concluded that organic medicinal charcoal can be used as a feed additive in pig diets because it improves the digestibility of feed and fecal odor, and has positive effects on the population of microorganism in feces.

Odor Emission Reduction from Enclosed Growing-Finishing Pig House Using Different Biofilter Media (무창 육성$\cdot$비육돈사에서의 Biofilter에 의한 악취제어 효과)

  • Song J. I;Kim T. I.;Choi H. C.;Yoo Y. H.;Jeong J. W.;Yeon K. Y.;Barroga Antonio;Yang C. B.;Kim D. H.;Lee J. W.
    • Journal of Animal Environmental Science
    • /
    • v.11 no.1
    • /
    • pp.55-60
    • /
    • 2005
  • This study was conducted to determine the odor reduction efficiency of a biofilter desist using different filter materials. The summary of results are as follows; 1. The airflow penetration rate of the different filter materials namely; rice straw, woodchips, rice hulls and sawdust were 0.72 m/s, 0.64 m/s, 0.48 m/s and 0.17 m/s, respectively. 2. The elimination of $NH_3$ gas was fastest in the rice hull at a rate of 4 mg/${\iota}$ followed by sawdust, woodchips and rice straw at 3 mg/${\iota}$, 3 mg/${\iota}$ and 7 mg/${\iota}$, respectively. 3. The filter material made of wood chips was able to eliminate the offensive gas known as $H_2S$ at a rate of 2.2 mg/${\iota}$ on the 7th day, 17.6 mg/${\iota}$ on the 21st day but decreased to 10.7 mg/${\iota}$ on the 36th day. In contrast, the filter material composed of sawdust had a continuous increase in the reduction of $H_2S$ at a rate of 12.3 mg/${\iota}$ on the 7th day, 18.3 mg/${\iota}$ on the 21st day and 20.1 mg/${\iota}$ on the 36th day. The above findings indicated that among the filter materials, sawdust was the most effective in absorbing $H_2S$. Airflow penetration rate can be related to $H_2S$ odor elimination efficiency as shown by the slowest airflow rate of sawdust which is only 0.17 m/s.

  • PDF

Characteristics of Ammonia in Alkaline Stabilization Facility of Sludge from Sewage Treatment Plant (하수처리오니 알칼리 안정화 처리시설에서의 암모니아 발생특성)

  • Kim, Yong-Jun;Chung, David;Jeong, Mi-Jeong;Yoo, Hye-Young;Yoon, Cheol-Woo;Shin, Sun-Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.23-33
    • /
    • 2016
  • The characteristics of ammonia generated from alkaline stabilization facilities was investigated which are for organic sewage sludge from wastewater treatment plants. The highest concentration of ammonia was found in mixing and curing process in alkaline stabilization facility and ammonia mainly showed a range of 87.78 ppm($66.62mg/m^3$) to 1,933 ppm($1,467.01mg/m^3$) by detection tube. This is presumed to occur because nitrogen oxides are converted into ammonia as the sewage sludge is mixed with lime. In some facilities, hydrogen sulfide and methyl mercaptan were detected in relatively high concentrations, but odor materials except ammonia were not detected in most of the facilities. The concentration of ammonia caused by process was generally high in the order of "mixing > curing > output > storage > drying > input." It was found that odor compounds are removed by wet absorption using sulfuric acid and sodium hypochlorite in the 5 alkaline stabilization facilities currently in operation. Each facility was designed to meet the concentration of after-treatment emission in 1 ppm($0.76mg/m^3$), 50 ppm($37.95mg/m^3$) or 100 ppm($75.89mg/m^3$), but no facility satisfied the design standard for their emssion limit. In case of ammonia, some workplaces in alkaline stabilization facilities exceeded the exposure limits established by the Ministry of Labor. It appears that proper ventilation should be provided for the safety of workers in future. No odor compound including ammonia was found by detection tubes in the border of the facilities, but trace amounts of odor compounds are expected to exist, given the current operational status of facilities.

Emission Characteristics of Odorous Sulfur Gases from Food Types: A Case Study on Boiled Egg, Milk, Canned Meat, and Strawberry (음식물의 악취 황화합물 발생특성 조사: 계란, 우유, 고기통조림, 딸기에 대한 사례 연구)

  • Kim, Bo-Won;Ahn, Jeong-Hyeon;Kim, Ki-Hyun;Jo, Sang-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.615-624
    • /
    • 2013
  • In this study, the emission patterns of reduced sulfur compounds (RSC) were investigated using four different types of food samples (boiled egg, milk, canned meat and strawberry) between fresh and decaying stages. To this end, the concentrations of RSCs were measured at storage days of 0, 1, 3, 6, and 9 under room temperature. Four sulfur compounds ($H_2S$, $CH_3SH$, DMS and DMDS) were selected as target compounds along with two reference compounds ($CS_2$ and $SO_2$). Their concentrations were quantified using GC-PFPD equipped with thermal desorption (TD) system. The boiled egg showed the highest concentration of $H_2S$ (3,655 ppb) at D-1, while $CH_3SH$ reached its maximum value of 64.4~78.5 ppb after 3 days. In milk samples, concentration of $CH_3SH$, DMS, and DMDS went up to 487, 16.3, and 578 ppb, respectively with the progress of decay (D-9). In case of canned meat, concentration of $H_2S$ and $CH_3SH$ peaked in the beginning (D-0) such as 345 and 66.6 ppb. In case of strawberry, $CH_3SH$ and DMDS showed the maximum concentrations 135 and 50.5 ppb at D-1, respectively. The olfactometry dilution-to-threshold (D/T) ratio by air dilution sensory (ADS) test showed similar patterns when sum of odor intensity (SOI) was derived via conversion of odorant concentration data. The results of this study confirm that the time of strong RSC emissions is distinguished for each food type between fresh (e.g., strawberries) and decaying conditions (e.g., milk).

A Study of Control Efficiency for Odorous Pollutants in Various Emission Control Units in the Ban-Wall Industrial Complex (공단지역의 대기배출시설을 대상으로 한 악취성분의 처리효율에 관한 연구 - 반월공단 지역을 중심으로)

  • Choi, Y.J.;Jeon, E.C.;Kim, K.H.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.110-124
    • /
    • 2007
  • In this study, the control efficiency of odorous compounds was measured from diverse control process units of 14 individual companies located within the Ban-Wall industrial complex of Ansan city, Korea (January to July 2005), To quantify the control efficiency levels of major odorous compounds, we collected odor samples from both the front and rear side of 17 control process units ($N=17{\times}2=34$). If the control efficiency is compared for each of 32 compounds between different process units, wet scrubber (WS) was found to be the most effective unit in terms of the sum of pollutants showing the positive control signals. Although the WS system shows generally a good control pattern for VOC, it is not the case for most index odorous pollutants; only 3 out of 12 index compounds were found to show positive control efficiencies. The results of the study also indicated that the control efficiency differ greatly between different industrial sectors and/or control process types. In the case of leather industry, carbonyl compounds were found to exhibit the highest control efficiency with its values varying from 19 to 90%. On the other hand, in the case of metal production sector, VOC recorded the maximum control efficiency with values varying from 18 to 79%. According to this study, most air pollution control facilities operated in most companies show fairly poor control efficiencies for most malodor compounds. Hence, to obtain best control efficiency of odorous pollutant emission, acquisition of better information on source characteristics and establishment of effective control technologies are highly demanding.

Estimation of VOCs Emissions Based on BTEX Compounds from Landfill Sites in Korea (국내 매립지에서의 BTEX 성분을 중심으로 한 VOCs 배출량 산정 연구)

  • Jung S.W.;Kim Y.J.;Jang S.J.;Kim K.H.;Hong J.H.;Kim J.C.;SunWoo Y.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.209-222
    • /
    • 2006
  • Odor problems brought about by deteriorating air quality occur in areas surrounding landfills because VOCs emissions from landfills are exhausted through surface soil and gas vents. Due to these factors, monitoring of VOCs emissions from landfills are essential. However, only a few studies have been carried out to assess VOCs emissions from landfills. A comprehensive approach to this problem is definitely warranted. In this study, we estimated BTEX emissions from 7 landfill sites in Korea using field experiments and LandGEM(Landfill Gas Emission Model), which is the USA EPA(Environmental Protection Agency)-recommended model for landfill gas emission estimation. For this purpose, we suitably modified the model's major input parameters $L_0$ and k according to 3 classes based on landfill scale after considering the characteristics of field experiments and LandGEM data. Consequently, we estimated VOCs emissions from landfills for cities, provinces and all of Korea alter modifying $L_0$ & k using LandGEM. Through the results of this study, we obtained essential basic data with respect to present conditions which will help us understand VOCs emissions from landfills in Korea.

Emission Characteristics of Carbonyl Compounds from Major Industrial Sectors in the Ban-Wall Industrial Complex, Korea (카보닐 계열의 배출 특성과 그에 따른 악취 발생 기여도 비교 연구: 반월공단내 주요 산업시설물들을 중심으로)

  • Hong, Y.J.;Jeon, E.C.;Kim, K.H.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.679-692
    • /
    • 2006
  • The carbonyl compounds in the atmosphere belong to one of the regulatory pollutants for the malodor control designated by the Korean Ministry of Environment(KMOE). In the present study, the emission concentration levels of carbonyl compounds were measured along with a number of criteria odor pollutants from a total of 47 individual companies(June 2004 to January 2005). The results of our study showed that a number of carbonyl compounds(such as formaldehyde, acetaldehyde, acetone, and butyraldehyde) maintained significantly high mean concentrations of 298 to 372 ppb. In contrast, other carbonyl compounds were low enough with the mean valves of 0.54 to 19.1 ppb. It was found that except for such industries as metal production or leather processing, their emissions were generally quite significant. If the measured values were evaluated in terms of malodor intensity, butyraldehyde appeared to be the most significant contributor to the malodor release. According to the measurements made in strong source areas, it can be concluded that several carbonyl compounds(acetaldehyde, propionaldehyde, butyraldehyde, isovaleraldehyde, and valeraldehyde) are useful enough to diagnose malodor release from those source areas. It should also be addressed that a number of carbonyl compounds added newly as the result of malodor control legislation were not sensitive enough to diagnose malodor release from such sources.

Effects of Leachate during Vegetable Waste Composting using Rotary Drum Composter

  • Varma, V. Sudharsan;Kalamdhad, Ajay S.
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.67-73
    • /
    • 2014
  • In India, disposal of vegetable market waste along with municipal solid waste in landfills or dumpsites is creating much nuisance in terms of odor nuisance, leachate production, and greenhouse gas emission into the atmosphere. Therefore, vegetable waste with high biodegradable and nutrient content is composted in a 550-L batch scale rotary drum composter to study the degradation process and its compost properties for its potential reuse as high quality compost. A total 150 kg of working volume was fixed for composting studies with two different ratios, trial A (6:3:1) of C/N 24 and trial B (8:1:1) of C/N 30, respectively. A maximum of $63.5^{\circ}C$ and $61.2^{\circ}C$ was observed in trials A and B; an average of $55^{\circ}C$ for more than 5 days, which helped in the degradation of organic matter and reduction of total and fecal coliform. The temperature dropped suddenly after the thermophilic stage in trial B, and leachate was observed due to insufficient amount of bulking agent. Mesophilic bacteria dominated during the initial stages of composting, and reduced considerably during the thermophilic stage. During the thermophilic stage, the rise in spore-forming organisms, including spore-forming bacteria, fungi, actinomycetes and streptomycetes, increased and these were predominant until the end of the composting process. By examination, it was observed that moisture and leachate production had adverse effects on the compost parameters with higher loss of micronutrients and heavy metals.