• 제목/요약/키워드: Odor causing compounds

검색결과 43건 처리시간 0.02초

서울시 관악구 도림천 복개 정도에 따른 환경 악취 요인 분석 (Analysis of Environmental Odor Factors for Dorim Stream in Gwanak-gu, Seoul)

  • 박소영;;김희원;윤형기;권태홍;김성균
    • 한국환경보건학회지
    • /
    • 제50권2호
    • /
    • pp.83-92
    • /
    • 2024
  • Background: In this study, we investigate the rapid increase in environmental odors and notable rise in civil complaints near Dorim Stream in the Gwanak-gu area of Seoul. Objectives: This study aims to identify the causal compounds responsible for environmental odors in the Dorim Stream and investigate the structural characteristics of the stream that influence odor generation. Methods: The research methodology involved setting up 41 sampling points, selecting panels for direct sensory evaluation to assess odor intensity, measuring dissolved oxygen and hydrogen sulfide concentrations, and using all-in-one low-temperature desorption gas chromatography (ATD-GC) and thermal desorption-gas chromatography-mass spectrometry (TD-GC/MS) analysis to identify odor-causing compounds. Results: The evaluation of Dorim Stream revealed that in areas with complete meandering, there were lower dissolved oxygen levels (4.5±2.67 mg/L) and higher odor intensity (4.0±0.92), while in partially meandering sections, higher dissolved oxygen levels (7.8±1.15 mg/L) and lower odor intensity (2.8±1.06) were observed. Hydrogen sulfide levels measured with sensors increased with higher temperatures, especially in the afternoon hours (12:00~14:00). Acetaldehyde was the dominant odor compound detected in both the Bonglim Bridge (0.4 ppm) area and Guro Bridge area (0.867 ppm), with concentrations more than twice as high near Guro Bridge. Odor-causing compounds identified by TD-GC/MS indicated a pungent, sulfurous odor in the Guro Bridge area and a musty odor in the Bonglim Bridge area. Conclusions: This study categorizes and analyzes the sources of odor in Dorim Stream in Seoul based on meandering patterns and the distribution of sewage facilities, highlighting the potential odor issues associated with combined sewage systems and sewer junctions and suggesting policy improvements.

A Study on the Distribution Characteristics of Sulfur Compounds in Ambient air using Continuous Monitoring Method in Incheon Area

  • Seo, Seok-Jun;Lim, Yong-Jae;Hong, You-deok;Park, Geon-Young
    • 통합자연과학논문집
    • /
    • 제8권2호
    • /
    • pp.128-134
    • /
    • 2015
  • This paper focuses on the applicability of a continuous monitoring method on trace sulfur compounds in the ambient air by TD and GC/PFPD. The target compounds for monitoring include H2S(hydrogen sulfide), Methyl mercaptan, Dimethyl Sulfide, and Dimethyl disulfide. The result of QA/QC on monitoring instruments satisfies all the standards of Odor Measurement and Analysis Method, showing that the reproductivity of the compounds by concentration is within 10%, linearity is above 0.98 of a correlation efficient, method detection limit is 0.16 ppb by MM standard, and recovery rate is over 70%. Monitoring was conducted for two years from March 2006 to February 2008. As a result of the monitoring, the average concentration of H2S was 0.08 ppb, with the maximum concentration at 16.15 ppb. The result indicates that it is reasonable to do continuous monitoring as there appears a spontaneous event of high concentration by the condition of the site during monitoring odor-causing substances. Therefore, it is suggested that the continuous monitoring method used in this paper is appropriate to identify the characteristics of sudden occurrence and concentration variations of sulfur compounds.

Effect of Inorganic Nanocomposite Based Liners on Deodorization of Kimchi

  • Chung, Kwon;Park, Hyun Jin;Shin, Yang Jai
    • 한국포장학회지
    • /
    • 제27권2호
    • /
    • pp.55-62
    • /
    • 2021
  • This study aims to reduce the rancid odor generated during the fermentation process of kimchi by inserting zinc oxide (ZnO) into an inorganic porous material with a high surface area to decompose or adsorb the fermentation odor. ZnO activated by the presence of moisture exhibits decomposition of rancid odors. Mixed with Titanium dioxide (TiO2), a photocatalyst. To manufacture the packaging liner used in this study, NaOH, ZnCl2, and TiO2 powder were placed in a tank with diatomite and water. The sludge obtained via a hydrothermal ultrasonication synthesis was sintered in an oven. After being pin-milled and melt-blended, the powders were mixed with linear low-density polyethylene (L-LDPE) to make a masterbatch (M/B), which was further used to manufacture liners. A gas detector (GasTiger 2000) was used to investigate the total amount of sulfur compounds during fermentation and determine the reduction rate of the odor-causing compounds. The packaging liner cross-section and surface were investigated using a scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) to observe the adsorption of sulfur compounds. A variety of sulfur compounds associated with the perceived unpleasant odor of kimchi were analyzed using gas chromatography-mass spectrometry (GC-MS). For the analyses, kimchi was homogenized at room temperature and divided into several sample dishes. The performance of the liner was evaluated by comparing the total area of the GC-MS signals of major off-flavor sulfur compounds during the five days of fermentation at 20℃. As a result, Nano-grade inorganic compound liners reduced the sulfur content by 67 % on average, compared to ordinary polyethylene (PE) foam liners. Afterwards SEM-EDS was used to analyze the sulfur content adsorbed by the liners. The findings of this study strongly suggest that decomposition and adsorption of the odor-generating compounds occur more effectively in the newly-developed inorganic nanocomposite liners.

오존($O_{3}$).입상활성탄(GAC) 공정을 이용한 맛.냄새 유발물질과 유기물질의 제거특성 평가 (Evaluation of Removal Characteristics of Taste and Odor causing Compounds and Organic matters using Ozone/Granular Activated Carbon($O_{3}$/GAC) Process)

  • 함영완;주영길;오효근;이병욱;김현기;김덕구;홍승관
    • 상하수도학회지
    • /
    • 제26권2호
    • /
    • pp.237-247
    • /
    • 2012
  • This study assessed the removal characteristics of taste and odor causing compounds (2-methylisoborneol and geosmin) and organic matters, using a pilot-scale ozone/granular activated carbon ($O_{3}$/GAC) process treating surface water of Pal-dang reservoir in the Han river over a 3-month period. Experiments were conducted to verify the removal efficiency of $O_{3}$/GAC process which has two different empty bed contact time (EBCT) ($O_{3}$/GAC column 1 : 10 min and 2 : 15.1 min) with 10.86 min contact time of ozonation at 1.0 mg/L $O_{3}$. Spiking test using geosmin and 2-MIB was also conducted systematically to mimic the conditions when the algae appears, specifically at the levels similar to the concentrations experienced (geosmin: 250 ng/L) in the winter of 2011. In single ozonation process, organic materials, disinfection by-products (DBPs) and their precursors were disassembled but not removed completely. Meanwhile, it was verified that organic matters, taste and odor causing compounds, and DBPs were well removed when sequentially passing through the GAC process. The pilot results also showed that GAC column with larger EBCT achieved higher removal efficiency. Specifically, in spiking tests, single $O_{3}$ process showed approximately 89% removal efficiency of geosmin and 2-MIB. $O_{3}$/GAC combined process demonstrated excellent removal of geosmin and 2-MIB, which are higher than 95%.

대청호 원수와 하류 역조정지 원수에서의 이취미 비교 (Comparison of Taste and Odor in Raw Water from the Main Daecheong Reservoir and Its Regulating Reservoir Downstream)

  • 배병욱;이유정;임문구
    • 한국물환경학회지
    • /
    • 제24권5호
    • /
    • pp.598-602
    • /
    • 2008
  • The Daecheong Reservoir is the largest multi-purpose reservoir in the Keum River basin. This water supply is subject to some of the most serious taste and odor (T&O) problems in the region. The intensity of T&O events increased due to eutrophication during the 1990s. In this study, the temporal occurrence of T&O in raw water from the main Daecheong Reservoir and its regulating reservoir was compared using both an instrumental method (CLSA+GC/MS) and threshold odor number (TON) test from April to December 2006. In addition, biofilms on the submerged macrophytes and rocks were analyzed for two typical T&O causing compounds, Geosmin and 2-MIB. The maximum concentration of Geosmin in the main reservoir was almost two times higher than that in the regulating reservoir. Interestingly, 2-MIB was only detected in water samples from the main reservoir. In the case of T&O causing compounds present in the biofilm on the submerged macrophytes and rocks, the regulating reservoir had lower concentrations compared to those of the main reservoir. It was found that both Geosmin and 2-MIB were detected from the biofilms much earlier than from the water samples. This result suggests that the occurrence of T&O compounds in the biofilms could be used as an early warning indicator of an imminent T&O outbreak in the water body.

맥동식 침전지에서 맛·냄새 유발물질 제거 특성 (Removal Property of Taste and Odor Causing Material in Pulsator Clarifier)

  • 정일용;차민환
    • 한국물환경학회지
    • /
    • 제27권1호
    • /
    • pp.104-109
    • /
    • 2011
  • The removal efficiencies of 2-methylisoborneol (MIB) and geosmin were investigated to reveal removal characteristics of typical organic compounds causing disagreeable taste and odor at the conventional water treatment plant installed with pulsator clarifier patented by the French company $Degr{\acute{e}}mont$. The injection rate of Powdered Activated Carbon (PAC) into water was changed step wisely as we conducted jar tests in the laboratory and water treatment in the actual plant. 2-MIB concentration decreased linearly while geosmin did exponentially along with the injection rate of PAC at our jar tests. The removal efficiency of geosmin by PAC injection was considerably higher than that of 2-MIB. In the real pulsator clarifier, 2-MIB concentration started decreasing as the injection rate reached up to 10 mg/L of PAC. On the other hand, the concentration of geosmin in water decreased proportional to the injection rate of PAC. In the sand filtration, removal efficiencies of 2-MIB and geosmin on July were much higher than those on March. It was carefully suggested beforehand and found afterwards that general microorganisms notably existed in the sand filter with no chlorine in filter influent and backwash water and the sand filter biologically activated removed much more odor compounds. It was considered as the reason why the removal efficiency of 2-MIB and geosmin was increased. The microbial activity maybe increased in summer with water temperature rising and low filtration rate possibly increased contact time between odor compounds and general microorganisms.

산업체 VOC/악취 저감기술 (Removal Technologies of Odor and Volatile Organic Compounds from Industrial Processes)

  • 추수태;남창모
    • 한국산업융합학회 논문집
    • /
    • 제7권3호
    • /
    • pp.289-297
    • /
    • 2004
  • Emissions of volatile organic compounds and odors from various industrial processes not only pollute surrounding life environments, but also lead to the deterioration of the working environments, causing various industrial health and business problems. These pollutants are usually stimulating, irritating, malodorous and sometimes carcinogenic, Which should be reduced in the pollutants formation, stage, but the practical processes do not allow This paper describes the major sources of VOC and odors, and their sampling/analysis methods. Furthermore, various removal technologies for these pollutants are suggested, which particularly include the characteristics of the catalytic and scrubber/carbon filter combined process, and even process design technologies.

  • PDF

메탄발효와 퇴비화 공정이 연계된 가축분뇨 처리시설에서 발생되는 악취물질 특성 조사 (Characteristic of Odorous Compounds Emitted from Livestock Waste Treatment Facilities Combined Methane Fermentation and Composting Process)

  • 고한종;김기연;김현태;고문석;히구치 다카시;우메다 미키오
    • Journal of Animal Science and Technology
    • /
    • 제50권3호
    • /
    • pp.391-400
    • /
    • 2008
  • 악취는 이웃주민들로 하여금 민원을 유발시키는 주요 원인이기 때문에 악취관리는 지속가능한 축산과 매우 밀접한 관계가 있다. 본 연구는 메탄발효와 퇴비화 공정이 연계된 가축분뇨 처리시설에서 각 공정별로 기기분석과 직접 관능법을 병행하여 악취 물질의 농도, 악취 강도 및 악취 불쾌도를 측정하고자 수행하였으며, 하계와 동계로 구분하여 처리 공정과 부지경계선에서 각각 암모니아, 황화합물 및 휘발성 저급지방산의 농도를 분석하였다. 높은 외기온에 기인하여 하계의 악취농도가 동계보다 높은 것으로 나타났다. 공정별로는 혼합된 분뇨를 교반하는 퇴비화 공정에서 악취 농도가 가장 높게 검출되었으며, 분뇨 투입조, 퇴비 후숙조, 분뇨 유출조 및 퇴비 선별과 포장 공정의 순으로 악취 농도가 낮았다. 검출된 악취 물질 중 가장 높은 농도는 암모니아로 3.4에서 224.7 ppm의 농도 범위로 분석되었다. 황화합물 중에서는 황화수소가 가장 높은 농도인 2.3 ppm인 것으로 분석되었으며, 대부분의 황화합물 농도가 기존에 보고된 최소감지한계농도를 초과하는 것으로 측정되었다. 또한 아세트산은 휘발성 저급지방산 가운데 51에서 89%로 가장 놓은 비율을 차지하고 있으며, 다음으로는 프로피온산과 부트르산이 각각 1.9에서 35% 및 1.8에서 15%의 비율을 보이는 것으로 나타났다. 처리공정에서 발생되는 주요 악취원인 물질을 예측하고자 각각의 공정에서 측정된 악취물질의 농도를 최소감지한계농도로 나누어 악취농도지수를 계산하였다. 그 결과 퇴비화 공정에서는 황화수소, 암모니아, 황화메틸 및 메틸머캅탄이 악취원인 물질로 밀접한 연관이 있는 것으로 나타났으며, 분뇨 투입조에서는 황화수소, 메틸머캅탄 및 부트르산이 주요 악취물질인 것으로 나타났다.

Pulse UV 장치를 이용한 먹는 물의 이취미 유발물질 제거효과에 관한 연구 (Removal of taste and odor causing compounds in drinking water using Pulse UV System)

  • 손진식;박순호;정의택
    • 상하수도학회지
    • /
    • 제26권2호
    • /
    • pp.219-228
    • /
    • 2012
  • Problems due to the taste and odor in drinking water are common in treatment facilities around the world. Taste and odor are perceived by the public as the primary indicators of the safely and acceptability of drinking water, and are mainly caused by the presence of two semi-volatile compounds-2-methylisoborneol(2-MIB) and geosmin. Conventional treatment processes in water treatment plants, such as coagulation, sedimentation and chlorination have been found to be ineffective for the removal of 2-MIB and geosmin. Pulse UV system is a new UV irradiation system that is a non-mercury lamp-based alternative to currently used continuous wave systems for water disinfection. This study shows pulse UV system to be effective in treatment of these two compounds. Geosmin removal efficiency of UV process alone achieved approximately 70% at 10sec contact time. 2-MIB removal efficiency of UV only process achieved approximately 60% at 10sec contact time. The addition of $H_{2}O_{2}$ 7mg/L increased geosmin and 2-MIB removal efficiency upto approximately 94% and 91%, respectively.

대청호에서 Geosmin, 2-MIB의 시간적·공간적 분포 특성 (Temporal and Spatial Distribution of Geosmin and 2-MIB in the Daecheong Reservoir)

  • 김교영;간종범;최인찬;홍선화;이준배;이수형;이재정
    • 한국환경농학회지
    • /
    • 제34권1호
    • /
    • pp.14-20
    • /
    • 2015
  • BACKGROUND: Contamination of source water by odorous compounds are one of the problems related to the water quality management, especially in Korea where surface water is used as drinking water. Geosmin (1, 10-trans-dimethyl-trans-9-decalol) and 2-MIB (2-methyl isoborneol : 1,2,7,7-tetramethyl-exo-bicycloheptan-2-ol) are commonly recognized earthy-musty odor compounds produced by algae causing serious problems to the drinking water purification facilities. METHODS AND RESULTS: In this study, spatial and temporal distribution of the odor compounds, geosmin and 2-MIB were investigated along with the development of phytoplankton in the Daechung reservoir from July 2012 to October 2013. CONCLUSION: Concentrations and frequencys of detection of both compounds increased from April to October which were related to cyanobacterial bloom periods. However, concentrations of odor compounds were not related to the number of cyanobacteria. Concentrations of both cyanobacteria and geosmin showed similar trends with depth. Pearson correlation analyses showed that geosmin concentration exhibited significant correlation with the count of Anabaena macrospora and Aphanizomenon flos-aquae. On the other hand, 2-MIB concentration showed a significant correlation with the count of Anabaena smithii.