• Title/Summary/Keyword: Odor Gas

Search Result 289, Processing Time 0.027 seconds

Characteristic study and isolation of Bacillus subtilis SRCM 101269 for application of cow manure (우분 적용을 위한 Bacillus subtilis SRCM 101269의 분리 및 특성 연구)

  • Jeon, SaeBom;Oh, HyeonHwa;Uhm, Tai-Boong;Cho, Jae-Young;Yang, Hee-Jong;Jeong, Do-Youn
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.74-83
    • /
    • 2016
  • Bacillus subtilis SRCM 101269 having safety and amo gene isolated from Korean traditional fermented food and their investigated characterization to apply the cow manure such as cellulase and xylanase activities, 16S rRNA sequencing, and ability of removal of livestock manure odor. Cow manure application results for the removal of livestock manure odor, the ammonia gas was reduced more than two-folder compared to the control group after 6 days, and reduced to less than 10 ppm after 9 days. In the case of cow manure added fowl droppings and other wood-based mixture components, ammonia gas maintained constant after 3 days of fermentation. However, in the case of sample inoculated B. subtilis SRCM 101269, ammonia gas reduced in course of fermentation time, and concentration of hydrogen sulfide also reduced for 65 ppm. Changes of nitrite concentration according to fermentation time no showed different for cow manure, however nitrite concentration in mixed livestock manure increased when compared to control. And then sulfate concentration in cow manure decreased, and no showed different when compared to the initial fermentation. No apparent change of sulfate concentration in mixed livestock manure detected. Through the previously studies, B. subtilis SRCM 101269 has high potential in industrial application manufacturing the cow manure as removal of livestock manure odor.

Selection of Biofilter Support for Removing MEK (MEK 제거를 위한 바이오필터용 담체의 선택)

  • Jeong Gwi-Taek;Lee Gwang-Yeon;Lee Kyoung-Min;Sunwoo Chang-Shin;Lee Woo-Tae;Jung Seong-Ho;Cha Jin-Myoung;Jang Young-Seon;Park Don-Hee
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.34-41
    • /
    • 2006
  • The aim of this study is the development of biological removal process of methyl ethyl ketone (MEK) in odor gas, which is generated from the waste food recycling process. To develop the removal process of odor gas, MEK, the selection of proper biofilter support was carried out. When the biofilter equipment was passed by synthetic odor gas composed of 250 ppm of MEK, the maximum removal was achieved to $586.6g-MEK/m^3\;hr$ for polypropylene fibril as support. Under the same experimental conditions, the maximum removal in polyurethane support was obtained to $359.7 g-MEK/m^3\;hr$. Finally, the maximum removal in volcanic stone support was $56.2g-MEK/m^3\;hr$.

Determination of Major Reduced Sulfur Gases Emitted from Wastes Stored in Environmental Facility Using GC/FPD (GC/FPD를 이용한 환경기초시설 폐기물의 대기중 황계열 악취물질 배출특성에 관한 연구)

  • Lee, Taeyoon;Lee, Jeakeun;Lee, Junki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.37-43
    • /
    • 2009
  • With the economic development of Korea, sewage treatment facilities and waste food treatment facilities have been steadily increased. These facilities have positive effects such as the conservation of the water resources quality and waste food recycling while they also affect the neighborhood life with severe odor problems. Therefore, it was first collected sludge samples from 5 sewage treatment facilities and 5 waste food treatment facilities where the amounts of waste produced from above sites are relatively immense in Busan and estimate the $H_2S$ emission rates. Then it was selected 1 sample which has the highest emission rate of $H_2S$. Using flux chamber and GC/FPD analyses, it was tried to quantify the emitted amount of sulfonic gas concentration under anoxic condition. The sludge sample obtained from Noksan sewage treatment facility has the highest emission rate of $H_2S$. This sample contained 156.18 mg/kg $H_2S$. The odor compounds were analyzed using GC/FPD and the concentrations were converted to odor quotient. Among odor compounds the ratio of $CH_3SH$ (methylmercaptan) for the total odor quotient was 47.3% and considered to be the main odor compound in the sample.

  • PDF

Characteristics of Bio-filter Support Media for the Odor Control (악취가스 제어를 위한 Bio-filter 담체의 특성 비교)

  • Lee, Hye-Sung;Chu, Duk-Sung;Jung, Joon-Oh
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.101-107
    • /
    • 2008
  • Bio-filtration utilizes microorganisms fixed to a porous medium to metabolize pollutants present in an air stream. The microorganisms grow in a bio-film on the surface of a medium or are suspended in the water phase surrounding the medium particles. Therefore, bio-filter support media play one of the most important key roles in bio-filtration of gas phase pollutants. To characterize and select the appropriate support media, gas adsorption capacity and microorganism immobilization were investigated in lab-scale experiments for the selected target support media which were compost I (compost from lab-scale process), compost II (compost from municipal facility), bark, wood chip, orchid stone and vermiculite. As odor materials, ammonia and trimethylamine were utilized. From the result of experiments, bark was superior to any other support media tested in adsorption capacity as much as 12.5 mg ammonia per 1 g bark. In trimethylamine adsorption, bark and wood chip showed a remarkable results of 21.1 and 14.1 mg/g respectively. On the other hand, microorganism fixation test determined by the count of nitrogen oxidizing microbes population, the compost II and wood chips showed the best results. Considering the characteristics of materials and the operating condition of the bio-filter, bark, wood chip, and compost II are applicable to the support media of bio-filter when they are appropriately blended on the basis of studying the media pH, packing porosity and moisture contents.

Development of a Semiconductor Odor Gas Sensor for the Measurement of CH3SH with Taguchi Experimental Design (Taguchi 실험 계획법에 의한 CH3SH 반도체 악취 가스 센서의 개발)

  • Kim Sun-Tae;Choi Il-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.783-792
    • /
    • 2004
  • In this study, a thick-film semiconductor odor gas sensor for the detection of $CH_3$SH was developed using SnO$_2$ as the main substrate and was investigated in terms of its sensitivity and reaction time. In the process of manufacturing the sensor, Taguchi's design of experiment (DOE) was applied to analyze the effects of a variety of parameters, including the substrate, the additives and the fabrication conditions, systematically and effectively. Eight trials of experiments could be possible using the 27 orthogonal array for the seven factors and two levels of condition, which originally demands 128 trials of experiments without DOE. The additives of Sb$_2$O$_{5}$ and PdCl$_2$ with the H$_2$PtCl$_{6}$ ㆍ6$H_2O$ catalyst were appeared to be important factors to improve the sensitivity, and CuO, TiO$_2$, V$_2$O$_{5}$ and PdO were less important. In addition, TiO$_2$, V$_2$O$_{5}$ and PdO would improve the reaction time of a sensor, and CuO, Sb$_2$O$_{5}$, PdCl$_2$ and H$_2$PtCl$_{6}$ㆍ6$H_2O$ were negligible. Being evaluated simultaneously in terms of both sensitivity and reaction time, the sensor showed the higher performance with the addition of TiO$_2$ and PdO, but the opposite results with the addition of CuO, V$_2$O$_{5}$, Sb$_2$O$_{5}$ and PdCl$_2$. The amount of additives were superior in the case of 1% than 4%. H$_2$PtCl$_{6}$ㆍ6$H_2O$ would play an important role for the increase of sensor performance as a catalyst.nce as a catalyst.

Characteristics of Cyclone and Electric Dust Collection Oil Filters for Selective Removal of Fiber Tenter Air Pollutants (섬유 텐터 대기오염물질의 선택적 제거를 위한 싸이클론 및 전기 집진 오일필터의 특성)

  • Jin Ho Jung;Seung Hwan Ryu;Soon Duk Kwon;Yoon Hyun Cho
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.256-273
    • /
    • 2023
  • Among the dyeing industries, the tenter process is a process that improves the quality of fibers by drying and ironing (heat treatment) dyed fabrics, and drugs such as water repellents, antistatic agents, and fiber softeners are mainly used in these tenter processes. These drugs are vaporized in the process of treatment by high temperatures (180 ~ 230℃), and are observed in a complex form such as white smoke, oil mist, and fine dust, causing odor. To treat the complex exhaust gas at the rear end of the tenter facility, most companies operate by installing a wet scrubber and an adsorption tower alone or in parallel, but there are many problems. In particular, the insoluble oil mist at the rear end of the tenter has significantly low processing efficiency in the cleaning dust collection facility, and there is a problem in the facility by adsorption due to the occlusion phenomenon caused by the oil mist. In addition, the odor gas at the rear end of the tenter contains a lot of aldehydes, and in order to improve these various problems, a complex exhaust purification device using cyclone and electric support collector was developed. This study examined the applicability of economical and efficient technology by removing complex air pollution at the rear end of the tenter and applying improved technology than the existing technology.

Treatment of Odorous air pollutants by Plasma and Photocatalytic Process. (플라즈마 광촉매 복합 긍정을 이용한 악취물질 중 TEA, MEK의 분해처리)

  • 최금찬;정창훈
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1255-1260
    • /
    • 2003
  • Plasma-photocatalytic oxidation process was applied in the decomposition of Triethylamine(TEA) and Methyl ethyl ketone(MEK). Plasma reactor was made entirely of pyrex glass and consists of 24mm inner diameter, 1,800mm length and discharge electrode of 0.4mm stainless steel. And initial concentrations of TEA and MEK for plasma-photocatalytic oxidation are 100 ppm. Odor gas samples were taken by gas-tight syringe from a glass sampling bulb which was located at reactor inlet and outlet, and TEA and MEK were determined by GC-FID. For plasma process, the decomposition efficiency of TEA and MEK were evaluated by varying different flowrates and decomposition efficiency of TEA and MEK increased considerably with decreasing treatment flowrates. For photocatalytic oxidation process, also the decomposition efficiency of TEA and MEK increased considerably with decreasing treatment flowrates. The decomposition efficiency of MEK was 57.8%, 34.2%, 18.8% respectively and the decomposition efficiency of TEA was reached all 100%. This result is higher than that of plasma process only, From this study, the results indicate that plasma-photocatalytic oxidation process is ideal for treatment of TEA and MEK.

Performance Characteristics of Matured Compost Biofiltration of Ammonia Gas from the Agitated Composting (교반식 퇴비화 암모니아가스의 부숙퇴비를 이용한 탈취성능 특성)

  • 홍지형;박금주
    • Journal of Animal Environmental Science
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Real sized open type biofilter system was manufactured to control the odor generated from the agitated composting system which composted swine manure and sawdust mixtures. The aim of this research was to develop a biofilter system using matured compost and to evaluate the performance of the biofilter system. Average ammonia reduction rate through the biofilter was 84% during about two month period of composting. The maximum ammonia concentration after filtering was 45ppm lower than allowable value of 50ppm. It was concluded that compost can be used as a biofilter materials.

  • PDF

A Study on the Environmental Characteristic Analysis at Closed Small Sale Landfill Site (소규모 사용종료매립지의 환경특성분석)

  • Jang, Seong-Ho;Cho, Han-Jin;Lee, Chun-Sik
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.901-905
    • /
    • 2010
  • Emissions of leachate, odor, and landfill gas(LFG) from an open-dumping landfill site do harm to public health by contaminating neighboring soil, underground water, and rivers. Particularly, methane($CH_4$) and carbon dioxide($CO_2$), the main components of LFG, are especially noted as the causing material of the global warming that become seriously recognized worldwide issue. As one of alternatives in managing LFG, incineration of inflammable wastes that are generated during excavation process at an open-dumping landfill has been evaluated. Standard on stabilization for evaluation, neither $CH_4$ density nor $CO_2$ density could not Because meet 'less than 5%' criterion and so it is right to install a gas collection system during landfill renewal to prevent diffusion of odor and collect it. Because it shows considerable heating value, incineration of inflammable wastes might be the reasonable solution from the result of our study.