• Title/Summary/Keyword: Odor Emissions

Search Result 64, Processing Time 0.027 seconds

Evaluation of field application of biocover and biofilter to reduce landfill methane and odor emissions (매립지 메탄 및 악취 배출 저감을 위한 바이오커버 및 바이오필터의 현장적용 평가 연구)

  • Chae, Jeong-Seok;Jeon, Jun-Min;Oh, Kyeong-Cheol;Ryu, Hee-Wook;Cho, Kyung-Suk;Kim, Shin-Do
    • Journal of odor and indoor environment
    • /
    • v.16 no.2
    • /
    • pp.139-149
    • /
    • 2017
  • In order to reduce odor and methane emission from the landfill, open biocovers and a closed biofilter were applied to the landfill site. Three biocovers and the biofilter are suitable for relatively small-sized landfills with facilities that cannot resource methane into recovery due to small volumes of methane emission. Biocover-1 consists only of the soil of the landfill site while biocover-2 is mixed with the earthworm casts and artificial soil (perlite). The biofilter formed a bio-layer by adding mixed food waste compost as packing material of biocover-2. The removal efficiency decreased over time on biocover-1. However, biocover-2 and the biofilter showed stable odor removal efficiency. The rates of methane removal efficiency were in order of biofilter (94.9%)>, biocover-1(42.3%)>, and biocover-2 (37.0%). The methane removal efficiency over time in biocover-1 was gradually decreased. However, drastic efficiency decline was observed in biocover-2 due to the hardening process. As a result of overturning the surface soil where the hardening process was observed, methane removal efficiency increased again. The biofilter showed stable methane removal efficiency without degradation. The estimate methane oxidation rate in biocover-1 was an average of 10.4%. Biocover-2 showed an efficiency of 46.3% after 25 days of forming biocover. However, due to hardening process efficiency dropped to 4.6%. After overturn of the surface soil, the rate subsequently increased to 17.9%, with an evaluated average of 12.5%.

Seasonal atmospheric characteristics in a swine finishing barn equipped with a continuous pit recirculation system using aerobically treated manure

  • Choi, Yongjun;Ha, Duck-Min;Lee, Sangrak;Kim, Doo-Hwan
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1977-1985
    • /
    • 2022
  • Objective: This study was conducted to determine the seasonal characteristics of odorous material emissions from a swine finishing barn equipped with a continuous pit recirculation system (CPRS) using aerobically treated manure. Methods: The CPRS consists of an aerobic manure treatment process and a pit recirculation system, where the solid fraction is separated and composted. The aerated liquid fraction (290.0%±21.0% per day of total stored pig slurry) is continuously recirculated to the top of the slurry in the pit. Four confinement pig barns in three piggery farms were used: two were equipped with CPRS, and the other two operated a slurry pit under the slatted floor across all seasons. Results: The indoor, exhaust, and outside odor intensities were significantly lower in the CPRS group than in the control group (p<0.001). In the CPRS group, the odor intensity outside was significantly lower in the fall than in the other seasons (p = 0.015). In the indoor atmosphere, the temperature and CO2, NH3, and H2S contents of the CPRS group were significantly lower than those of the control group (p<0.05). In the CPRS group, indoor temperature did not significantly change in the spring, summer, and fall seasons and was significantly lower in the winter (p = 0.002). NH3, H2S, methyl mercaptan, dimethyl disulfide, trimethylamine, phenol, indole, and skatole levels were significantly lower in the CPRS group than in the control group (p<0.05). There were significant seasonal differences on the odorous material in both the control and CPRS groups (p<0.05), but the pattern was not clear across seasons. Conclusion: The CPRS can reduce the indoor temperature in the summer to a level similar to that in the spring and fall seasons. The CPRS with aerated liquid manure is expected to reduce and maintain malodorous emissions within acceptable limits in swine facilities.

A Study on the Environmental Characteristic Analysis at Closed Small Sale Landfill Site (소규모 사용종료매립지의 환경특성분석)

  • Jang, Seong-Ho;Cho, Han-Jin;Lee, Chun-Sik
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.901-905
    • /
    • 2010
  • Emissions of leachate, odor, and landfill gas(LFG) from an open-dumping landfill site do harm to public health by contaminating neighboring soil, underground water, and rivers. Particularly, methane($CH_4$) and carbon dioxide($CO_2$), the main components of LFG, are especially noted as the causing material of the global warming that become seriously recognized worldwide issue. As one of alternatives in managing LFG, incineration of inflammable wastes that are generated during excavation process at an open-dumping landfill has been evaluated. Standard on stabilization for evaluation, neither $CH_4$ density nor $CO_2$ density could not Because meet 'less than 5%' criterion and so it is right to install a gas collection system during landfill renewal to prevent diffusion of odor and collect it. Because it shows considerable heating value, incineration of inflammable wastes might be the reasonable solution from the result of our study.

Effects of Antimicrobial Socks Using Hemp Stem Bark Extract Fibers on Foot Health Improvement (대마줄기껍질 추출 섬유를 활용한 항균 양말이 발 건강 개선에 미치는 영향)

  • Su-Hyun Kim;Hee-Sook Kim
    • Fashion & Textile Research Journal
    • /
    • v.26 no.2
    • /
    • pp.190-197
    • /
    • 2024
  • With increasing global interest in environmentally friendly materials and the consequent rise in demand, there is a growing need for alternatives to synthetic fibers, which can cause skin diseases and other side effects. The fashion industry is emphasizing material sustainability owing to concerns about increasing carbon emissions. Moreover, consumers express a strong desire for ecofriendly and sustainable materials. Therefore, clothing brand companies are developing eco-friendly products to enhance their corporate image. Hemp fibers are recognized for their functionality and are utilized as crucial materials in the development of eco-friendly products by global fashion companies. In this study, we produced socks that effectively improve foot health using hemp stem bark extract fibers and demonstrated the positive efficacy of natural fibers through functional and wearability evaluations. Hemp stem bark extract fibers showed 99.9% antimicrobial effectiveness against bacteria responsible for sweat-induced bacterial proliferation and odor, when blended with lyocell fibers and woven into fabric to manufacture socks. Wearability evaluations of these terry cloth socks confirmed a reduction in foot odor and fatigue among the participants with a consumer satisfaction of 4.63/5. These findings confirm the effectiveness and positive impact of the natural antimicrobial properties of hemp fibers and terry cloth structure in improving foot health.

Effect of Dietary Supplementation of Enzyme and Microorganism on Growth Performance, Carcass Quality, Intestinal Microflora and Feces Odor in Broiler Chickens (효소제와 미생물제제의 첨가 급여가 육계의 생산성, 도체성적, 장내 미생물 및 계분 악취에 미치는 영향)

  • Park, Cheol Ju;Sun, Sang Soo
    • Korean Journal of Poultry Science
    • /
    • v.47 no.4
    • /
    • pp.275-283
    • /
    • 2020
  • This experiment was conducted to investigate the effect of the addition of enzymes and microorganisms to broiler feed on productivity, carcass characteristics, intestinal microflora, and feces odor. A total of one-hundred eighty 180 chicks (Ross 308) were randomly assigned to 5 treatments with 3 replications each having 12 birds per pen. The experimental group was divided into 0.1% EZ group (0.1% metallo-protease added to the feed), 0.2% EZ group (0.2% metallo-protease added to the feed), M group (2.0% Bacillus veleznesis CE 100 added to the feed), and MW group (2.0% Bacillus veleznesis CE 100 added to the feed and drinking water). In the results, final body weight, body weight gain, the feed conversion ratio, protein efficiency, and energy efficiency were not significantly different among all treatments in across all periods. Carcass weight, proventriculus, gizzard, heart, small intestine, cecum, and rectum weight were not significantly different among all of the treatments. However the liver weight was significantly higher in the 0.1% EZ group than in the control, M and MW groups (P< 0.05). E. coli was significantly lower in MW than in the control and M (P<0.05), and it was significantly higher in the M than 0.2% EZ and MW (P<0.05). H2S emissions in feces was not significantly different among all treatments, but NH3 emissions was were significantly higher in 0.1% EZ than in MW (P<0.05). In conclusion, the addition of 0.1% of metallo-protease was effective in the development of the liver of broilers.

Effect of storage temperature, period, and sawdust addition on the biochemical methane potential of cattle manure (우분의 저장온도, 저장기간, 톱밥의 혼합에 따른 메탄잠재량 변화)

  • Im, Seongwon;Kim, Sangmi;Kim, Hyu hyoung;Kim, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.29-36
    • /
    • 2021
  • In spite of the highest energy potential among all domestic organic solid wastes. the research on biogas production from cattle manure is limited. In particular, effects of organic content degradation and sawdust addition during storage on biomethane potential have never been investigated. In the present work, we investigated the change of organic content during storage of cattle manure under different temperatures (20℃ and 30℃), and its impact on biomethane potential and odor emissions. 90 days of investigation results showed that 10% of organics in terms of VS and COD were degraded at 20℃ during storage, while 30% were degraded at 30℃. This result impacted on biomethane potential, while 10-13% and 24% reduction were observed from beef and dairy cattle manure, respectively. The temperature also affected on CH4 and odor emissions during storage by 3.3-3.8 times and 29 times. The effect of sawdust on lowering down biomethane potential was found to be substantial, reducing 61-75% compared to the control.

Paint booth volatile organic compounds emissions in an urban auto-repair center

  • Cho, Minkyu;Kim, Ki-Hyun;Szulejko, Jan E.;Dutta, Tanushree;Jo, Sang-Hee;Lee, Min-Hee;Lee, Sang-hun
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.329-337
    • /
    • 2017
  • A major concern regarding most auto-repair shops in residential areas is the emission of odorous volatile organic compounds (VOCs) into the local atmosphere, especially during painting operations. VOCs contribute to poor local air quality and are responsible for the perceived odor and discomfort experienced by local residents. Sixteen major VOCs (6 aromatic hydrocarbons and 10 aliphatic carbonyl compounds) were selected as potential target compounds. The site was an auto-repair shop located in a central region of Seoul, South Korea, where the air quality of the site has been a subject of residents' complaints. The sampling points were as follows: 1) in the painting booth with new (NB) or old (OB) removal system, (2) in the exhaust duct after new (ND) or old (OD) odor removal filter, and (3) 2 m below the discharge vent (4 m above the ground) (outdoor air, OA). Each sample was coded: (1) before painting (BP), (2) during painting (DP), and (3) after painting (AP). The toluene level in the duct with the new removal filter during painting (ND-DP) was 1.5 ppm (v/v), while it was 3.8 ppm (v/v) in the right duct with an old removal filter during painting (OD-DP). Accordingly, the effect of filter replacement was reflected by differences in VOC levels. Therefore, accurate monitoring of odorous VOCs is an important step to reduce odor nuisance from local sources.

Development and Application of Multi-Function Valve to Solve Major Problems of Expansion and Off-Odor Leakage in the Packaging of Kimchi

  • Jeong, Suyeon;Cho, Chi Heung;Lee, Hyun-Gyu;Lee, Jung-Soo;Yoo, SeungRan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.3
    • /
    • pp.113-120
    • /
    • 2018
  • The one-way gas valve developed in this study was designed to prevent the breakage of packages from increased internal pressure, which is a problem in packaged Kimchi, and simultaneously reduce the outflow of the offodor release. The effect of the one-way gas valve on the headspace atmospheric compositions was investigated in the packaging system. The changes of atmospheric compositions and quality factors of Kimchi, such as $CO_2$ accumulation, pH, titratable acidity, and salinity, were measured during a 4-week storage period at $4^{\circ}C$. The Kimchi package with the one-way gas valve dramatically reduced pressure build-up in the pouch by allowing the controlled flow of gas to the atmosphere. In addition, the package design allows the possibility of controlling the gas generated from Kimchi by adjusting the viscosity of the open pressure control oil. The one-way gas valve did not affect the sensory characteristics of Kimchi products during the storage period. Furthermore, the deodorizing capability of the activated carbon contained in the one-way gas valve effectively reduced the off-odor of Kimchi products released along with carbon dioxide. The novel one-way gas valve is considered to be an active packaging system that can solve major problems of expansion and off-odor leakage in the packaging of Kimchi.

Reducing Ammonia Emissions and Enhancing Plant Growth through Co-application of Microbes and Methanol in Sewage Sludge Treatment (하수슬러지 처리에서 미생물과 메탄올 적용을 통한 암모니아 배출 감소 및 식물 성장 향상 연구)

  • Jin-Won Kim;Hee-Gun Yang;Hee-Jong Yang;Myeong-Seon Ryu;Gwang-Su Ha;Su-Ji Jeong;Soo-Young Lee;Ji-Won Seo;Do-Youn Jeong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.2
    • /
    • pp.13-24
    • /
    • 2023
  • Sewage sludge has been widely used as an organic fertilizer in agriculture. However, sewage sludge can cause serious malodor problems resulting from the decomposition of organic compounds in anaerobic conditions. The malodor of sewage sludge mainly occurs due to a low carbon to nitrogen ratio (C/N), high moisture, and low temperature, which are ideal conditions for ammonia emissions. Therefore, in this study, we investigated the reduction of the odor-causing ammonia nitrogen (NH3-N) in sewage sludge by co-application of microbes and methanol (MeOH). The physico-chemical properties of the municipal sewage sludge showed that the odor was mainly caused by a higher NH3-N content (2932.2 mg L-1). Supplementation with MeOH (20%) as a carbon source in the sewage sludge significantly reduced the NH3-N up to 34.2% by increasing C/N ratio. Furthermore, the sewage sludge was treated with the NH3-N reducing and plant growth promoting (PGP) bacteria Stenotrophomonas rhizophila SRCM 116907. The treatment with S. rhizophila SRCM 116907 significantly increased the seedling vigor index of Lolium perenne (10.3%) and Chrysanthemum burbankii (42.4%). The findings demonstrate that supplementing sewage sludge with methanol significantly reduces ammonia emissions, thereby mitigating malodor problems. Overall, the study highlights the potential of using a microbial and methanol approach to improve the quality of sewage sludge as an organic fertilizer and promote sustainable agriculture.

Effect of Compost Turning Frequency on the Composting and Biofiltration (퇴비화 및 탈취처리에 퇴비 혼합 교반 빈도가 미치는 영향)

  • Hong Ji-Hyung;Park Keum-Joo
    • Journal of Animal Environmental Science
    • /
    • v.12 no.2
    • /
    • pp.85-94
    • /
    • 2006
  • The effects of turning frequency of in-vessel composting on ammonia emissions during composting of separated solids from swine slurry/sawdust mixtures and performance of biofiltration using the chicken manure compost were investigated. Separated solids from swine manure amended with sawdust was composted in a 226 L laboratory-scale in-vessel reactors under various turning frequency and continuous airflow (0.6 L/min.kg.dm) for three weeks. Three laboratory-scale manure compost biofilters were built to treat effluent gas from the composting of separated solid from swine manure amened with sawdust process. These experiments were continued over a period of three weeks. The composting of separated solid swine manure amended with sawdust and manure compost biofiltration system were evaluated to determine the turning frequency type that would be adequate for the rate of decomposition and compost odour reduction. The compost odour cleaning was measured based on ammonia gas concentration before and after passing through the manure compost biofilter. The average ammonia odor reduction in the manure compost biofilter was 96.9 % at R1 (no turning), 99.4 % at R2(once a day turning) and 89.0 % at R3(twice a day turning), respectively. The efficiency of ammonia reduction was mainly influenced by the turning frequency.

  • PDF