• Title/Summary/Keyword: Octree Segmentation

Search Result 6, Processing Time 0.028 seconds

Segmentation and Classification of Lidar data

  • Tseng, Yi-Hsing;Wang, Miao
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.153-155
    • /
    • 2003
  • Laser scanning has become a viable technique for the collection of a large amount of accurate 3D point data densely distributed on the scanned object surface. The inherent 3D nature of the sub-randomly distributed point cloud provides abundant spatial information. To explore valuable spatial information from laser scanned data becomes an active research topic, for instance extracting digital elevation model, building models, and vegetation volumes. The sub-randomly distributed point cloud should be segmented and classified before the extraction of spatial information. This paper investigates some exist segmentation methods, and then proposes an octree-based split-and-merge segmentation method to divide lidar data into clusters belonging to 3D planes. Therefore, the classification of lidar data can be performed based on the derived attributes of extracted 3D planes. The test results of both ground and airborne lidar data show the potential of applying this method to extract spatial features from lidar data.

  • PDF

Improved k-means Color Quantization based on Octree

  • Park, Hyun Jun;Kim, Kwang Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.9-14
    • /
    • 2015
  • In this paper, we present an color quantization method by complementing the disadvantage of K-means color quantization that is one of the well-known color quantization. We named the proposed method "octree-means" color quantization. K-means color quantization does not use all of the clusters because it initializes the centroid of clusters with random value. The proposed method complements this disadvantage by using the octree color quantization which is fast and uses the distribution of colors in image. We compare the proposed method to six well-known color quantization methods on ten test images to evaluate the performance. The experimental results show 68.29 percent of mean square error(MSE) and processing time increased by 14.34 percent compared with K-means color quantization. Therefore, the proposed method improved the K-means color quantization and perform an effective color quantization.

Automatic Extraction of Roof Components from LiDAR Data Based on Octree Segmentation (LiDAR 데이터를 이용한 옥트리 분할 기반의 지붕요소 자동추출)

  • Song, Nak-Hyeon;Cho, Hong-Beom;Cho, Woo-Sug;Shin, Sung-Woong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.327-336
    • /
    • 2007
  • The 3D building modeling is one of crucial components in building 3D geospatial information. The existing methods for 3D building modeling depend mainly on manual photogrammetric processes by stereoplotter compiler, which indeed take great amount of time and efforts. In addition, some automatic methods that were proposed in research papers and experimental trials have limitations of describing the details of buildings with lack of geometric accuracy. It is essential in automatic fashion that the boundary and shape of buildings should be drawn effortlessly by a sophisticated algorithm. In recent years, airborne LiDAR data representing earth surface in 3D has been utilized in many different fields. However, it is still in technical difficulties for clean and correct boundary extraction without human intervention. The usage of airborne LiDAR data will be much feasible to reconstruct the roof tops of buildings whose boundary lines could be taken out from existing digital maps. The paper proposed a method to reconstruct the roof tops of buildings using airborne LiDAR data with building boundary lines from digital map. The primary process is to perform octree-based segmentation to airborne LiDAR data recursively in 3D space till there are no more airborne LiDAR points to be segmented. Once the octree-based segmentation has been completed, each segmented patch is thereafter merged based on geometric spatial characteristics. The experimental results showed that the proposed method were capable of extracting various building roof components such as plane, gable, polyhedric and curved surface.

Organizing Lidar Data Based on Octree Structure

  • Wang, Miao;Tseng, Yi-Hsing
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.150-152
    • /
    • 2003
  • Laser scanned lidar data record 3D surface information in detail. Exploring valuable spatial information from lidar data is a prerequisite task for its applications, such as DEM generation and 3D building model reconstruction. However, the inherent spatial information is implicit in the abundant, densely and randomly distributed point cloud. This paper proposes a novel method to organize point cloud data, so that further analysis or feature extraction can proceed based on a well organized data model. The principle of the proposed algorithm is to segment point cloud into 3D planes. A split and merge segmentation based on the octree structure is developed for the implementation. Some practical airborne and ground lidar data are tested for demonstration and discussion. We expect this data organization could provide a stepping stone for extracting spatial information from lidar data.

  • PDF

3D Building Modeling Using Aerial LiDAR Data (항공 LiDAR 데이터를 이용한 3차원 건물모델링)

  • Cho, Hong-Beom;Cho, Woo-Sug;Park, Jun-Ku;Song, Nak-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.141-152
    • /
    • 2008
  • The 3D building modeling is one of crucial components in constructing 3D geospatial information. The existing methods for 3D building modeling depend mainly on manual photogrammetric processes, which indeed take great amount of time and efforts. In recent years, many researches on 3D building modeling using aerial LiDAR data have been actively performed to aim at overcoming the limitations of existing 3D building modeling methods. Either techniques with interpolated grid data or data fusion with digital map and images have been investigated in most of existing researches on 3D building modeling with aerial LiDAR data. The paper proposed a method of 3D building modeling with LiDAR data only. Firstly, octree-based segmentation is applied recursively to LiDAR data classified as buildings in 3D space until there are no more LiDAR points to be segmented. Once octree-based segmentation is completed, each segmented patch is thereafter merged together based on its geometric spatial characteristics. Secondly, building model components are created with merged patches. Finally, a 3D building model is generated and composed with building model components. The experimental results with real LiDAR data showed that the proposed method was capable of modeling various types of 3D buildings.

A Study on Game Contents Classification Service Method using Image Region Segmentation (칼라 영상 객체 분할을 이용한 게임 콘텐츠 분류 서비스 방안에 관한 연구)

  • Park, Chang Min
    • Journal of Service Research and Studies
    • /
    • v.5 no.2
    • /
    • pp.103-110
    • /
    • 2015
  • Recently, Classification of characters in a 3D FPS game has emerged as a very significant issue. In this study, We propose the game character Classification method using Image Region Segmentation of the extracting meaningful object in a simple operation. In this method, first used a non-linear RGB color model and octree color quantization scheme. The input image represented a less than 20 quantized color and uses a small number of meaningful color histogram. And then, the image divided into small blocks, calculate the degree of similarity between the color histogram intersection and adjacent block in block units. Because, except for the block boundary according to the texture and to extract only the boundaries of the object block. Set a region by these boundary blocks as a game object and can be used for FPS game play. Through experiment, we obtain accuracy of more than 80% for Classification method using each feature. Thus, using this property, characters could be classified effectively and it draws the game more speed and strategic actions as a result.