• Title/Summary/Keyword: Octopus hepatopancreas

Search Result 2, Processing Time 0.017 seconds

Comparison of the Exopeptidase Activity of Fractions from Crude Extracts of Octopus Octopus vulgaris Cuvier Hepatopancreas Using Different Fractionation Methods

  • Kim, Min Ji;Kim, Hyeon Jeong;Kim, Ki Hyun;Heu, Min Soo;Kim, Jin-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.181-187
    • /
    • 2014
  • This study was performed to identify the optimum fractionation method and conditions to obtain exopeptidase-active fractions from octopus hepatopancreas (HP) crude extracts (CEs) using four techniques: solid ammonium sulfate fractionation, polyethylene glycol (PEG) fractionation, anion exchange chromatography, and gel filtration chromatography. The fractions with the highest total activity toward L-leucine-p-nitroanilide (Leu-pNA) were fraction IV from the ammonium sulfate and PEG fractionation, and fraction II in ion exchange and gel filtration chromatography. The total exoprotease activity of these fractions was highest in fraction IV (4,050.20 U) of ammonium sulfate fractionation, followed by fraction II (3,600.28 U) from gel filtration chromatography, fraction IV (2,861.30 U) from PEG fractionation, and fraction II (2,576.28 U) from ion exchange chromatography. These results suggest that ammonium sulfate fractionation using 60-80% ammonium sulfate was the most efficient method for separating the exoprotease active fractions from CEs of octopus HP.

Endoprotease and Exopeptidase Activities in the Hepatopancreas of the Cuttlefish Sepia officinalis, the Squid Todarodes pacificus, and the Octopus Octopus vulgaris Cuvier

  • Kim, Min Ji;Kim, Hyeon Jeong;Kim, Ki Hyun;Heu, Min Soo;Kim, Jin-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.197-202
    • /
    • 2012
  • This study examined and compared the exopeptidase and endoprotease activities of the hepatopancreas (HP) of cuttlefish, squid, and octopus species. The protein concentration in crude extract (CE) from octopus HP was 3,940 mg/100 g, lower than those in CEs from squid HP (4,157 mg/100 g) and cuttlefish HP (5,940 mg/100 g). With azocasein of pH 6 as a substrate, the total activity in HP CE of octopus was 31,000 U, lower than the values for cuttlefish (57,000 U) and squid (69,000 U). Regardless of sample type, the total activities of the CEs with azocasein as the substrate were higher at pH 6 (31,000-69,000 U) than at pH 9 (19,000-34,000 U). With L-leucine-p-nitroanilide (LeuPNA) of pH 6 as the substrate, the total activity of the HP CE from octopus was 138,000 U, higher than values from both cuttlefish HP (72,000 U) and squid HP (63,000 U). Regardless of sample type, the total activities of the CEs with LeuPNA as the substrate were higher at pH 6 (63,000-138,000 U) than at pH 9 (41,000-122,000 U). With LeuPNA as the substrate, the total activities of the CEs from octopus HP and cuttlefish HP were higher at pH 6 than at pH 9. However, there was no difference in total activity between pH 6 and 9 for squid HP CE with LeuPNA as the substrate. These results suggest that the octopus HP is superior to the cuttlefish HP and squid HP as a potential resource for extracting exopeptidases. Exopeptidases from octopus HP have potential industrial applications and their use might aid in reducing pollution related to the octopus industry.