• Title/Summary/Keyword: Oceanographic condition

Search Result 66, Processing Time 0.028 seconds

Design of Oceanography Buoy - Part II: Mooring System (해양관측용 부이의 설계 건전성 평가 - Part II: 계류시스템 구조건전성 평가)

  • Keum, Dong-Min;Kim, Tae-Woo;Han, Dae-Suk;Lee, Won-Boo;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • The purpose of the present study was to evaluate the safety under extreme environmental conditions and the dynamic safety under service environment conditions, of oceanographic buoy mooring systems consisting of a variety of materials, including chain, wire rope, nylon rope, and polypropylene rope. For the static safety assessment of a mooring system, after the calculation of external forces and the division of a mooring system into finite elements, the numerical integral was conducted to yield the elemental static tension until satisfying the geometrical convergence condition. To evaluate the dynamic safety, various processes were considered, including data collection about the anticipated areas for mooring, a determination of the parameters for the interpretation, the interpretation of the dynamic characteristics based on an analytic equation that takes into account the heave motion effect of a buoy hull and a mooring system, and a fatigue analysis of the linear cumulative damage. Based on the analysis results, a supplementary proposal for a wire rope that has a fracture in an actual mooring area was established.

Wind-induced Spatial and Temporal Variations in the Thermohaline Front in the Jeju Strait, Korea

  • Han, In-Seong;Suh, Young-Sang;Seong, Ki-Tack
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.117-124
    • /
    • 2013
  • We investigated the short-term and local changes in the thermohaline front in the Jeju Strait, Korea, which is usually formed during winter and spring. To do so, we compared Real-Time Observation System by Ferryboat (RTOSF) data with wind data and routinely collected oceanographic data. During February and April 2007, a thermohaline front formed in the Jeju Strait around the 13-$14^{\circ}C$ isotherms and 33.0-33.5 isohalines. The thermohaline was clearly weakened and began moving southward in mid-March. The variations in the surface temperature and salinity showed a continuous north-south oscillation of the thermohaline front with a period of 3-10 days. The speed of the short-term and local fluctuation of thermohaline front was about 5-30 cm/s. We confirmed these findings by examining the variation in the maximum temperature gradient and $14^{\circ}C$ isotherm during the study period. These short-term and local changes had not been previously detected using serial oceanographic and satellite data. Analysis of local wind data revealed a northerly wind fluctuation with a period of 3-10 days, which was clearly related to the short-term and local changes in the thermohaline front. The short-term and local changes of the thermohaline front in the Jeju Strait originated from local changes in the winter monsoon in this area.

On the Influence of the Oceanographic Condition in the East China Sea and the Yellow Sea on the fluctuation of the Gang-dal-i fishing ground (동지나해 .황해의 해황이 강달이 어장의 변동에 미치는 영향)

  • Yang, Seong-Gi;Jo, Gyu-Dae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.18 no.2
    • /
    • pp.81-89
    • /
    • 1982
  • In order to analyze the formation mechanism for the fishing ground of the Gang-dal-i, the relationship between the fish grounds of the Gang-dal-i and the oceanographic structure of the East China Sea and the Yellow Sea is investigated by using the data of the catches of stow net fishery (Fisheries Research and Development Agency, 1970-1979) and the oceanographic observation data (Japan Meteorological Agency). The main fishing grounds of the Gang-dal-i concentrated in the adjacent seas of Daeheugsan island and Sokotra Rock. In these areas, the fishing conditions are generally stable, because about 70% of the total catch of the Gang-dal-i for the ten years is occupied, CPUE also is relatively great, and the coefficients of variation of the catches are relatively small as 0.9 to 1.4. The main fishing periods are roughly from February to March and June to July, and the years of good catches are from 1974 to 1976. In general, the main fishing grounds are formed in the marginal areas of the Yellow Sea Bottom Cold Water. They are the frontal areas in which the Yellow Sea Bottom Cold Water is intermixed with the Yellow Sea Warm Current. The range of the temperature and the salinity in these regions are from 10 to 13$^{\circ}C$ and 32.5 to 34.4$\textperthousand$, respectively.

  • PDF

Korean Drift Gillnet Fishery For Flying Squid , Ommastrephes bartrami ( Lesueur ) , and the Variation of Oceanographic Conditions in the North Western Pacific Ocean (한국의 빨간 오징어 유자망 어업과 북서태평양의 해황 변동)

  • 임기봉
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.3
    • /
    • pp.8-16
    • /
    • 1986
  • The fishing conditions of flying squid, ommastrePhes barsram(Lesueur), in the North Pacific Ocean was studied based on the horizontal water temperature data, satellite data from NOAA and statistical data of flying squid fisheries which were collected from 1980 to 1984. The obtained results were as follows; 1. Since 1979, the Korean drift giIlnet fishery for flying squid was launched in North Pacific. Number of operating vessel and catch of flying squid increased gradually every year. The number of vessels were 111 and their annual catches were 42, 977 M/T in 1984. Therefore, Korean drift giIlnet fishery for this species has played an important role in the products of Korean high-sea fisheries. 2. In the beginning of the fisheries, fishing grounds was formed in the west of long. 1800E. In 1982, in consequence of the center which extended eastward, the fishing ground was formed long. 166$^{\circ}$W in the central North Pacific Ocean. Since 1983, the fishing grounds were formed as far as long. 161$^{\circ}$W. The range of general fishing season in the central North Pacific was from June to August. After september, fishing ground was shifted to the west, in the Northwestern Pacific. 3. The Predominant fishing season for the flying squid was August through January of the coming year. Optimum water temperature for flying sguid at surface layer in the Pacific Ocean ranged from 11 $^{\circ}$e to 17$^{\circ}$e in winter, 13$^{\circ}$e to 17$^{\circ}$e in spring, 12. 8$^{\circ}$C to 19.7$^{\circ}$e in summer and 1O.6$^{\circ}$e -18.7$^{\circ}$e in fall. 4. In summer, the Oceanographic condition in the North Pacific Ocean showed that the water temperature at surface layer was lower in 1980, 1983 and higher in 1981, 1982 and 1984 as compared with mean annual water temperature. 5. The characteristics df oceanographic conditions in the fluation, disformation, mixing and other factors of the Kuroshio and Oyashio currents, which have considerably influenced upon the water masses of the areas. 6. The data and information on surface thermal Structure interpreted from Infrared Satellite Imaginary from NOAA-7 and NOAA-8 are very available in estimating water temperature on the areas and investigating the major fishing grounds. 7. According to the fisheries statics of Japanese drift gilInet, the annual catches of flying squid considerably decreased from 225, 942 M/T in 1983 to 133, 217 M/T in 1984. 8. The fishing grounds in the central North Pacific in several fishing seasons were formed as follows: In June, the initial fishing season, the fishing grounds were formed in the vicinity of lat. 35 - 40oN, the central North Pacific east of 179$^{\circ}$E. In July, the fishing ground were formed in the wide arEa of the central North Pacific north of 400N and long. 174$^{\circ}$E-145$^{\circ}$W In Auguest, concentrative fishing operation carried out in :he central North Pacific north of 43$^{\circ}$N and East of 165$^{\circ}$W. On the other hand, in September, main fishing grounds were disappeared and moved to the west.

  • PDF

The Relationship between the Fishing Grounds and Oceanographic Condition Associated with Fluctuation of Mackerals Catches in the East China Sea (고등어 어획량 변동에 따른 동지나해의 어장과 해황)

  • Jo, Gyu-Dae;Hong, Cheol-Hun;Kim, Yong-Mun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.2
    • /
    • pp.83-90
    • /
    • 1984
  • The secular fluctuations of catches and fishing grounds of mackerals and the oceanographic conditions for the fishing grounds are examined by using the data of catches of mackerals by middle and large class purse-seiner during 1951 to 1981 and those of oceanographic observation carried out by Japan Meteorological Agency. The results are as follows; The fishing grounds of mackerals are respectively distributed at northeastern and southwestern areas from the central part of the East China Sea through every season of the studied years: 1968, 1974 and 1980. The narrow belt type of fishing grounds were formed inside of the Kuroshio in spring and winter of the three years. In summer mackeral species move northward and the fishing grounds are formed in the southern sea of Korea. In winter, however, mackeral species move southward and the fishing grounds are appeared in the Tsushima Current region. The dispersion of fishing grounds is generally larger in summer and smaller in spring, and especially it is the largest in summer in 1980. It seems that the concentration and dispersion of fishing grounds are related to the depth of thermocline and the position of horizontal temperature gradient in this area.

  • PDF

Oceanic Condition of Fishing Ground n the Southwestern Coastal Sea of Korea in 1998 (1998년 한국 남서해 연안 어장의 해황 특성)

  • 김동수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.291-300
    • /
    • 1999
  • In order to investigate the oceanic condition of fishing ground in the southwestern coastal sea of Korea, the oceanographic observation were carried out by the trainingship of Yosu university on May, August and November in 1998. Main features in the observation are as follows; 1) the ranges of temperature, salinity, density and chlorophyll-a were from $14.5^{\circ}C\;to\;18.0^{\circ}C,\; from\;33.5\textperthousand\;to\;34.5\textperthousand$from 24.0 to 25.5 and from $1.0\mu$g/l in spring (May) from $15.0^{\circ}C\;to\;27.5^{\circ}C,\;from\;0.0\textperthousand\;35.0\textperthousand$9.0 to 26.0 and from 0.5$\mu\textrm{g}$/l to 4.0$\mu\textrm{g}$/l in summer(August), and from $ to 21.0^{\circ}\;31.0\textperthousand$, from 22.0 and from $4.0\mug/l\;to\;20.0\mug/l$ in autumn(November), respectively, 2) the temperature in the coastal region was higher than that in the open ocean while salinity, density and chlorophyll-a were lower, and the convection was identified between the surface and the bottom during in spring and autumn, 3) the chlorophyll-a in the this region was varied in each season, being highly distributed offshore Yosu Bay, 4) on evidence of sea water intrusion toward Kumun island was observed.

  • PDF

OUTBREAK OF HARMFUL ALGAL BLOOMS RELATED WITH TEMPERATURE DISTRIBUTION DERIVED FROM IN-SITU AND REMOTE SENSING EXPERIMENTS IN THE KOREAN WATERS

  • Han, In-Seong;Seong, Ki-Tack;Suh, Young-Sang
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.360-363
    • /
    • 2006
  • The red tide related with Cochlodinium Polykrikoides bloom has been frequently occurred around the South Sea of Korea and caused the economic loss in the coastal breeding grounds. The outbreak scale was usually change by physical, biological and environmental condition at each years. Relatively large-scale red tide occurred in 1995, 1997, 1999, 2001, 2002 and 2003 through spatial scale, duration and maximum density. Compared the scale of red tide with physical condition around the South Sea, the lower coastal temperature on August around the South Sea corresponded with the large scale red tide. By serial oceanographic investigations on August in the South Sea and estimated wide area temperature information by satellite, SSTA around the South Sea and wide area was negative when the outbreak of red tide was large scale. From the results of temperature difference between surface and 30m layers, the occurrence of enormous red tide has a tendency when the temperature gradient around the seasonal thermocline was weakened. Larger Kuroshio volume transport in the upstream was also corresponded with the large scale red tide.

  • PDF

Study on the Intensive Catching Method of Anchovy for Live Bait-III Relation Between Variation of Sea Condition and Catch of Anchovy in the Southern Coast of Korea (활멸치의 집약적 생산수단에 관한 연구 -III)

  • 한영호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.15 no.1
    • /
    • pp.23-33
    • /
    • 1979
  • This paper was analysed based on the oceanographic and meteorological data complied from 1971 to 1977 for that search relationships among the fluctuation of sea condition and weather condition, and the catch of anchovy. In the year when heat loss from the sea surface in winter was maximum(in 1974, 658 Iy), temperature of midwater in summer was lower 2~4\ulcornerC than normal year. While heat loss was minimum (in1973, 487 Iy), temperature of mid water was higher 2\ulcornerC. When temperature of mid water of southern coast from June to August was higher than normal year, anchovy was caught good deal, but that was lower than normal year was bad fishing. When it had much precipitation (in 1973, 256mm), plankton was checked maximum (12cc) and also the catch of anchovy too (11, OOOm/t). While precipitation was minimum (in 1976, 123mm), plankton (3cc) and anchovy (2, 800m/t) was a litle. If we calcalate heat budget in winter, we can forecast temperature of mid-water in summer of following year. Therefore we may be able to forecast catch anchovy.

  • PDF

Effect of Temperature on Anchovy Catch and Laver Production in the Eastern Part of the South Sea of Korea (멸치와 김 생산량 변동에 미치는 수온의 영향)

  • Lee, Chung-Il;Kim, Hyun-Ju
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.897-906
    • /
    • 2007
  • Effect of seawater temperature (temperature) on the production of anchovy, Engraulis japonica and laver, Porphyra tenera Kjellman, were investigated in the eastern part of South Sea of Korea (ESS). Bimonthly temperature data (Feb., Apr., Jun., Aug., Oct., Dec.) from 1980 to 2002 were collected from Korean Oceanographic Data Center (KODC) and monthly anchovy catch and laver production from 1980 to 2002 were used from published sources by the Ministry of Maritime Affairs & Fisheries, Korea. Effects of temperature on the two organisms were examined in four cases. In case of lower anchovy catch and higher laver production (1993), temperature during main spawning season of anchovy was about $0.2-0.6^{\circ}C$ lower than normal condition, and temperature during seed collecting season of laver in Namhaedo, Kojedo went down below $22.0^{\circ}C$. In case of higher anchovy catch and higher laver production (1995), optimum temperature for catch was formed in main fishing ground, temperature for seed collection was lower than $22.0^{\circ}C$, In case of lower anchovy catch and lower laver production (1996), temperature for spawning and catch was about $0.6-1.6^{\circ}C$ lower than normal condition, and temperature during seed collection in nursery was about $0.5-1.0^{\circ}C$ higher than optimum temperature for seed collection. In case of higher anchovy catch and lower laver production (1998), temperature during main fishing and spawning season was about $1.0-1.8^{\circ}C$ higher than normal condition, and temperature during laver seed collection in nursery was $1.5^{\circ}C$ higher than optimum temperature for seed collection.

Comparative Assessment of Wind Resources Between West Offshore and Onshore Regions in Korea (서해상과 연안지역의 풍력기상자원 비교평가)

  • Kim, Dae-Young;Jeong, Hyeong-Se;Kim, Yeon-Hee;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • Characteristics of wind resources of offshore and coastal regions were compared using wind data obtained from HeMOSU-1 (Herald of Meteorological and Oceanographic Special Unit-1) meteorological mast located at Southwestern Sea, and ground-based LiDAR (Light Detection And Ranging) at Gochang observation site near it. The analysis includes comparison of basic wind statistics such as mean wind speed, wind direction, power law exponent and their temporal variability as well as site assessment items for the wind power plant such as turbulence intensity and wind power density at the two observation sites. It was found that the wind at HeMOSU-1 site has lower diurnal and seasonal variability than that at Gochang site, which lead to smaller turbulence intensity. Overall, the results of the comparative analysis show that the wind resource at HeMOSU-1 site located offshore has more favorable condition for wind power generation than the wind resource at Gochang which shows nature of coastal area.