• Title/Summary/Keyword: Oceanic data

Search Result 379, Processing Time 0.027 seconds

Quality Control of Observed Temperature Time Series from the Korea Ocean Research Stations: Preliminary Application of Ocean Observation Initiative's Approach and Its Limitation (해양과학기지 시계열 관측 자료 품질관리 시스템 구축: 국제 관측자료 품질관리 방안 수온 관측 자료 시범적용과 문제점)

  • Min, Yongchim;Jeong, Jin-Yong;Jang, Chan Joo;Lee, Jaeik;Jeong, Jongmin;Min, In-Ki;Shim, Jae-Seol;Kim, Yong Sun
    • Ocean and Polar Research
    • /
    • v.42 no.3
    • /
    • pp.195-210
    • /
    • 2020
  • The observed time series from the Korea Ocean Research Stations (KORS) in the Yellow and East China Seas (YECS) have various sources of noise, including bio-fouling on the underwater sensors, intermittent depletion of power, cable leakage, and interference between the sensors' signals. Besides these technical issues, intricate waves associated with background tidal currents tend to result in substantial oscillations in oceanic time series. Such technical and environmental issues require a regionally optimized automatic quality control (QC) procedure. Before the achievement of this ultimate goal, we examined the approach of the Ocean Observatories Initiative (OOI)'s standard QC to investigate whether this procedure is pertinent to the KORS. The OOI QC consists of three categorized tests of global/local range of data, temporal variation including spike and gradient, and sensor-related issues associated with its stuck and drift. These OOI QC algorithms have been applied to the water temperature time series from the Ieodo station, one of the KORS. Obvious outliers are flagged successfully by the global/local range checks and the spike check. Both stuck and drift checks barely detected sensor-related errors, owing to frequent sensor cleaning and maintenance. The gradient check, however, fails to flag the remained outliers that tend to stick together closely, as well as often tend to mark probably good data as wrong data, especially data characterized by considerable fluctuations near the thermocline. These results suggest that the gradient check might not be relevant to observations involving considerable natural fluctuations as well as technical issues. Our study highlights the necessity of a new algorithm such as a standard deviation-based outlier check using multiple moving windows to replace the gradient check and an additional algorithm of an inter-consistency check with a related variable to build a standard QC procedure for the KORS.

On the Diurnal Variation of Cloudiness over the Weatern Pacific by Using GMS-IR Data (GMS-IR 자료를 이용한 서태평양에서의 운량 일변동에 관한 연구)

  • 김영섭;한경수
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • The western equatorial Pacific Ocean, where sea surface temperature is the warmest on the globe, is characterized by numerous convective systems and large annual precipitation. In this region, the cloudiness data with tops higher than 8km level obtained from the GMS-IR data are used to investigate the diurnal variation of cloudiness. The amplitude and phase of diurnal and semi-diurnal cycles are mainly investigated to examine details on the temporal and spatial structure of clouds. Cloudiness variation has typical cycles and each cycle is associated with the air-sea interactive phenomena. Spectral analysis on the cloudiness time series data indicates that 30-60 day, 17-20day, 7-8 day, diurnal and semi diurnal cycle are peaked. During Northern Winter and Southern Summer, the large cloudiness exsists over New Guinea, the adjacent seas of North Australia, and the open oceanic regions east of $160^{\circ}$E. Cloudiness diurnal variability over the lands and their adjacent seas is about 2.0 times larger than that over the open sea regions. That may be due to the difference of specific heat between the land and sea. The maximum and minimum cloudiness appeared at 18:00 and 09:00 hours over the land, and at noon and 21:00 hours over the sea, respectively. The amplitude of diurnal component over the land is 4,7 times larger than that of semi-diurnal component, and 1.5 times over the sea.

An Application of Statistical Downscaling Method for Construction of High-Resolution Coastal Wave Prediction System in East Sea (고해상도 동해 연안 파랑예측모델 구축을 위한 통계적 규모축소화 방법 적용)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Lee, Won-Hak
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.259-271
    • /
    • 2019
  • A statistical downscaling method was adopted in order to establish the high-resolution wave prediction system in the East Sea coastal area. This system used forecast data from the Global Wave Watch (GWW) model, and the East Sea and Busan Coastal Wave Watch (CWW) model operated by the Korea Meteorological Administration (KMA). We used the CWW forecast data until three days and the GWW forecast data from three to seven days to implement the statistical downscaling method (inverse distance weight interpolation and conditional merge). The two-dimensional and station wave heights as well as sea surface wind speed from the high-resolution coastal prediction system were verified with statistical analysis, using an initial analysis field and oceanic observation with buoys carried out by the KMA and the Korea Hydrographic and Oceanographic Agency (KHOA). Similar to the predictive performance of the GWW and the CWW data, the system has a high predictive performance at the initial stages that decreased gradually with forecast time. As a result, during the entire prediction period, the correlation coefficient and root mean square error of the predicted wave heights improved from 0.46 and 0.34 m to 0.6 and 0.28 m before and after applying the statistical downscaling method.

Analysis of Water Temperature Variations in Coastal Waters of the Korean Peninsula during Typhoon Movement (태풍 이동시 한반도 해역별 수온 변동 분석)

  • Juyeon Kim;Seokhyun Youn;Myunghee Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • In this study, we analyzed the water temperature variability in the sea area of the Korean Peninsula in August, before and after the typhoon inflow through Typhoon Soulik, the 19th in 2018 that turned right around the Korean Peninsula and passed through the East Sea, and Typhoon Bavi, the eighth in 2020 that advanced north and passed through the Yellow Sea. The data used in this study included the water temperature data recorded in the real-time information system for aquaculture environment provided by the National Institute of Fisheries Science, wind data near the water as recorded by the automatic weather system, and water temperature data provided by the NOAA/AVHRR satellite. According to the analysis, when typhoons with different movement paths passed through the Korean Peninsula, the water temperature in the East Sea repeatedly upwelled (northern winds) and downwelled (southern winds) depending on the wind speed and direction. In particular, when Typhoon Soulik passed through the East sea, the water temperature dropped sharply by around 10 ℃. When Typhoon Bavi passed through the center of the Yellow Sea, the water temperature rose in certain observed areas of the Yellow Sea and even in certain areas of the South Sea. Warmer water flowed into cold water regions owing to the movement of Typhoon Bavi, causing water temperature to rise. The water temperature appeared to have recovered to normal. By understanding the water temperature variability in the sea area of the Korean Peninsula caused by typhoons, this research is expected to minimize the negative effects of abnormal climate on aquaculture organisms and contribute to the formulation of damage response strategies for fisheries disasters in sea areas.

A Policy Suggestion for the Adaptation of Climate Change in Korea (우리나라의 기후변화 대응방안에 관한 정책 제언)

  • Shin, Im Chul;Kim, Yeongsin
    • Atmosphere
    • /
    • v.19 no.1
    • /
    • pp.53-66
    • /
    • 2009
  • The purpose of this study is to describe the roles of carbon dioxide in the climate change, and carbon dioxide reduction policies in some countries. In addition, ways to cope with climate change in Korea are also discussed. Currently, global temperatures are rising due to the carbon dioxide produced by human beings. Global temperatures will rise approximately $6^{\circ}C$ until 2100 if we emit carbon dioxide at a present rate. Temperature rise will affect the terrestrial and oceanic resources, and ultimately influence the socio-economic structures including political stability. Most of the carbon dioxide comes from fossil fuels. Therefore, it is urgent to reduce the use of energy, which comes from fossil fuels. Solving the climate change due to the increases in carbon dioxide is a global problem. Korea should participate in the international community and cooperate with each other in order to reduce the carbon dioxide concentration. No policy was announced for the reduction of carbon dioxide so far. Korea should make a policy for the reduction of carbon dioxide in a specific year compared to that of certain standard year such as 1990 or 2005. Making policy should be based on the scientific result of the amount of carbon dioxide emitted and absorbed. Germanwatch announced the Climate Change Performance Index (CCPI) in order to evaluate an effort to reduce the carbon dioxide for 56 countries which emits 90 % of global carbon dioxide. Ranking for Korea is 51 among 56 countries. This clearly indicates that the appropriate carbon dioxide reduction has not been exercised yet in Korea. Researchers have a moral responsibility to provide updated new ideas and knowledges regarding climate change. Politicians should have a sharp insight to judge the ideas provided by researchers. People need an ethics to reduce the carbon dioxide in every day's life. Scientific research should not be influenced by stress caused by external budget and negative impact of capitalism. Science should be based on the pure curiosity.

The fishery and fishing ground environment for red horsehead (Branchiostegus japonicus) on the adjacent seas of Jeju Island (제주도 근해의 옥돔 어업과 어장 환경에 관한 연구)

  • Kim, Jeong-Chang;Kang, Il-Kwon;Kim, Dong-Sun;Lee, Jun-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.1
    • /
    • pp.19-29
    • /
    • 2006
  • To investigate the fishery and fishing ground environment of red horsehead (Branchiostegus japonicus), the author analyzed the fishery data and examined the amount of catches and oceanic environment on the adjacent seas of Jeju island and East China Sea. It was turned out that the favourable season of the red horsehead fishery is the month from March to June, the main fishing ground is located in 60 mile radius from the position $32.5^{\circ}N,\;125.7^{\circ}E$. The bottom seawater temperature in fishing ground was shown between $l3^{\circ}C\;and\;16^{\circ}C$, the salinity was appeared between 33.5 and 34.0psu without the seasonal variation of the year. Concentrations of materials(e.g, $NO_3^-\;and\;NO_2^-$) in spring and summer time in main fishing ground were higher than any other seasons, but that of phospheric materials were lower than any other seasons. Concentrations of $chlorophyll\;-\;{\alpha}$ in the main fishing ground was the highest in spring and summer at the surface layer, but the vertical profile of the $chlorophyll\;-\;{\alpha}$ concentrations in all seasons were not variable at bottom layer. Mean density of zooplankton abundance according to the vertical structure was higher and much stable in summer and autumn than spring and winter.

Study on the Docking Algorithm for Underwater-Docking of an AUV Using Visual Guidance Device (광학식 유도장치를 이용한 자율 무인잠수정의 수중 도킹 알고리즘에 관한 연구)

  • Choi, Dong-Hyun;Jun, Bong-Huan;Lee, Pan-Mook;Kim, Sang-Hyun;Lim, Geun-Nam
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.33-39
    • /
    • 2007
  • The more deeply the researches make progress in ocean researches including the seabed resource investigation or the oceanic ecosystem investigation, the more important the role of UUV gets. In case of study on the deep sea, there are difficulties in telecommunications between AUV and ships, and in data communication and recharging. Therefore, docking is required. In AUV docking system, the AUV should identify the position of docking device and make contact with a certain point of docking device. MOERI (Maritime & Ocean Engineering Research Institute), KORDI has conducted the docking testing on AUV ISIMI in KORDI ocean engineering water tank. As AUV ISIMI approachs the docking device, there is some cases of showing an unstable attitude, because the lights which is on Image Frame are disappeared. So we propose the docking algorithm that is fixing the rudder and stem, if the lights on image frame are reaching the specific area in the Image Frame. Also we propose the new docking device, which has a variety of position and light number. In this paper, we intend to solve the some cases of showing an unstable attitude that were found in the testing, which, first, will be identified the validity via simulation.

Distribution of Walleye Pollock, Theragra chalcogramma, Spawning in Shelikof Strait, Gulf of Alaska, Based on Acoustic and Ichthyoplankton Surveys 1981, 1984 and 1985 (알라스카만 쉘리코프 해협에서 산란하는 명태, Theragra chalcogramma,의 분포에 대하여 : 1981, 1984~85년의 음향학적 조사 및 난치자어 조사)

  • KiM Suam;NUNNALLEE Edmund P.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.6
    • /
    • pp.425-438
    • /
    • 1990
  • Acoustic and ichthyoplankton data collected from Shelikof Strait in 1981, 1984 and 1985 were examined to determine spawning ground and period of walleye pollock, Theragra chalcogramma. Walleye pollock in the Gulf of Alaska migrated into Shelikof Strait for spawning during late winter and early spring. They entered Shelikof Strait via the warm and saline deep layer (continental slope water mass) in the southwestern channel, and major fish schools concentrated for spawning along the deep trough (250~300m) in the western part of the central strait. Peak spawning activity occurred there from late March to early April. Peak spawning time and area in Shelikof Strait varied little between years, despite difference in hydrography. Geographical advantages together with some oceanographic phenomena (reduced water transport and reduced mixed layer depth in spring) made that area an optimal spawning ground in the Gulf of Alaska during early April. After early April, spawning intensity decreased rapidly and the spawning area tended to expand to the northeast and southwest.

  • PDF

Optical Properties of Ocean Water and Marine Primary Production -A Study on the Oligotrophic Zone in the Eastern Tropical Atlantic Ocean- (해수의 광학적 성질과 해양기초생산 -동열대 대서양 Oligotrophic zone을 중심으로-)

  • YOON Hong-Joo;RYU Cheong-Ro;KIM Ki-Tae;KIM Hyeon-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.174-182
    • /
    • 1995
  • Using the optical data from the EUMELI 3 and 4 missions, the optical properties are discussed in relation to primary production in the oligotrophic zone of the Eastern Atlantic Ocean. The depth of euphotic layer $(Z_{eu})$, the total accumulated concentration of pigment $(C_{TOT})$ and the concentration of pigment (C) are 88m, $12.4mgm^{-2}\;and\;0.14mgm^{-3}$, respectively for the EUMELI 3 mission and 101.7m, $10.0mgm^{-2}\;and\;0.10mgm^{-3}$, respectively for the EUMELI 4 mission. The concentration of pigment is higher in autumn (EUMELI 3) than in spring (EUMELI 4). This indicates that the concentration of photosynthetic pigment has a close correlation with vertical attenuation coefficient $(K(\lambda))$ that changes seasonally in the euphotic layer. While the spectral distributions of downward Irradiance$(E_d)$ for the wave length of 470nm increase with depth, those of upward irradiance $(E_u)$ for the wave length range between 410nm and 490nm are constant, because the study area is covered with the blue and clear oceanic deep waters. The vertical attenuation coefficients of downward irradiance $(K_d)$ and upward irradiance $(K_u)$ have low values between 0.02 and $0.06m^{-1}$ due to the low absorption and scattering by the photosynthetic pigment of phytoplankton. Therefore this zone has the characteristics of the case 1 waters with low concentrations of photosynthetic pigment, and can be classifed into IB.

  • PDF

Accuracy of Short-Term Ocean Prediction and the Effect of Atmosphere-Ocean Coupling on KMA Global Seasonal Forecast System (GloSea5) During the Development of Ocean Stratification (기상청 계절예측시스템(GloSea5)의 해양성층 강화시기 단기 해양예측 정확도 및 대기-해양 접합효과)

  • Jeong, Yeong Yun;Moon, Il-Ju;Chang, Pil-Hun
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.599-615
    • /
    • 2016
  • This study investigates the accuracy of short-term ocean predictions during the development of ocean stratification for the Korea Meteorological Administration (KMA) Global Seasonal Forecast System version 5 (GloSea5) as well as the effect of atmosphere-ocean coupling on the predictions through a series of sensitive numerical experiments. Model performance is evaluated using the marine meteorological buoys at seas around the Korean peninsular (KP), Tropical Atmosphere Ocean project (TAO) buoys over the tropical Pacific ocean, and ARGO floats data over the western North Pacific for boreal winter (February) and spring (May). Sensitive experiments are conducted using an ocean-atmosphere coupled model (i.e., GloSea5) and an uncoupled ocean model (Nucleus for European Modelling of the Ocean, NEMO) and their results are compared. The verification results revealed an overall good performance for the SST predictions over the tropical Pacific ocean and near the Korean marginal seas, in which the Root Mean Square Errors (RMSE) were $0.31{\sim}0.45^{\circ}C$ and $0.74{\sim}1.11^{\circ}C$ respectively, except oceanic front regions with large spatial and temporal SST variations (the maximum error reached up to $3^{\circ}C$). The sensitive numerical experiments showed that GloSea5 outperformed NEMO over the tropical Pacific in terms of bias and RMSE analysis, while NEMO outperformed GloSea5 near the KP regions. These results suggest that the atmosphere-ocean coupling substantially influences the short-term ocean forecast over the tropical Pacific, while other factors such as atmospheric forcing and the accuracy of simulated local current are more important than the coupling effect for the KP regions being far from tropics during the development of ocean stratification.