• Title/Summary/Keyword: Ocean wave information

Search Result 207, Processing Time 0.029 seconds

Estimation of Design Wave Height for the Waters around the Korean Peninsula

  • Lee, Dong-Young;Jun, Ki-Cheon
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.245-254
    • /
    • 2006
  • Long term wave climate of both extreme wave and operational wave height is essential for planning and designing coastal structures. Since the field wave data for the waters around Korean peninsula is not enough to provide reliable wave statistics, the wave climate information has been generated by means of long-term wave hindcasting using available meteorological data. Basic data base of hindcasted wave parameters such as significant wave height, peak period and direction has been established continuously for the period of 25 years starting from 1979 and for major 106 typhoons for the past 53 years since 1951 for each grid point of the North East Asia Regional Seas with grid size of 18 km. Wind field reanalyzed by European Center for Midrange Weather Forecasts (ECMWF) was used for the simulation of waves for the extra-tropical storms, while wind field calculated by typhoon wind model with typhoon parameters carefully analyzed using most of the available data was used for the simulation of typhoon waves. Design wave heights for the return period of 10, 20, 30, 50 and 100 years for 16 directions at each grid point have been estimated by means of extreme wave analysis using the wave simulation data. As in conventional methodsi of design criteria estimation, it is assumed that the climate is stationary and the statistics and extreme analysis using the long-term hindcasting data are used in the statistical prediction for the future. The method of extreme statistical analysis in handling the extreme vents like typhoon Maemi in 2003 was evaluated for more stable results of design wave height estimation for the return periods of 30-50 years for the cost effective construction of coastal structures.

A Flow Analysis of Small Craft by Using CFD

  • Park, Ji-Yong;Jeong, Jin-Hee;Hwang, Tea-Wook;Lee, Sol-Ah;Kim, Kyung-Sung
    • Journal of Multimedia Information System
    • /
    • v.7 no.4
    • /
    • pp.269-276
    • /
    • 2020
  • The small craft including jet-board for leisure are commonly smaller than the general commercial vessels. For the floating vessel, the motion analysis is significantly important component to design the shape. It is, however, hardly predicting its behavior by using conventional boundary element method due to violating small amplitude assumption for potential theory. The computational fluid dynamics method can afford to simulate such small craft, but its grid system was not able to calculate motion, because movable body disturbs the grid system by confliction. The dynamics fluid body interaction model with over-set mesh system can be dealt with movable floating body under irregular ocean wave. In this study, several cases were considered to reveal that DFBI is essential method to predict floating body motion. The single phase simulate was conducted to establish the shape perfection, and then the validated vessel was simulated with ocean waves weather DFBI option on or off. Through the comparison, the results between the cases of DFBI on and off shows significantly difference. It was claimed that the DFBI was necessary not only to calculation body motion, but also to predict accurate drag and lift force on the floating body for small size craft.

Development and prospect of Smart EMW Absorber for Protection of Electronic Circuits and Devices with Heat Radiating Function (전자회로 및 부품 보호용 방열기능형 스마트 전파 흡수체의 개발과 전망)

  • Kim, Dong Il;Park, Soo Hoon;Joo, Yang Ick
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1040-1046
    • /
    • 2015
  • With the rapid progress of electronics and radio communication technology, human enjoys greater freedom in information communication. However, EMW (Electro-Magnetic Wave) environments have become more complicate and difficult to control. Thus, international organizations, such as the American National Standard Institution (ANSI), Federal Communications Commission (FCC), the Comite Internationale Special des Perturbations Radio Electrique (CISPR), etc, have provided standard for controlling the EM wave environments and for the countermeasure of the electromagnetic compatibility (EMC). In this paper, the status of EMW absorbers and the goal of smart EMW absorber in the future were described. Furthermore, design method of the smart EM wave absorber with heat radiating function was suggested. The designed smart EM wave absorber has the absorption ability of more than 20 dB from 2 GHz to 2.45 GHz band, the optimum aperture (hole) size, the adjacent hole space, and the thickness of which were 6 mm, 9 mm, and 6.5 mm, respectively. Thus, it is respected that these results can be applied as various EMC devices in electronic, communication, and controlling systems.

Investigation of Target Echoes in Multi-static SONAR System - Part I : Design for Acoustic Measuring System (다중상태 소나시스템을 적용한 표적반향음 연구 - Part I : 측정시스템 설계)

  • Bae, Ho Seuk;Ji, Yoon Hee;Kim, Wan-Jin;Kim, Woo-Shik;Kim, Jea Soo;Yun, Sung-Ung
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.429-439
    • /
    • 2014
  • The target echoes contain information on the target such as the orientation, kinematics, and internal structure, as well as the external geometrical shape of the target. In addition, the pattern of the target echoes depends on the arrangement of the transmitters and receivers in space. Therefore, the study of the target echoes in a multi-static SONAR system can be useful for detecting and tracking submerged objects using an underwater surveillance system. For this purpose, an acoustic measuring system for multi-static target echoes was designed and tested in an acoustic water tank. Some preliminary data are presented and discussed.

Sequential detection simulation of red-tide evolution for geostationary ocean color instrument with realistic optical characteristics

  • Jeong, Soo-Min;Jeong, Yu-Kyeong;Ryu, Dong-Ok;Kim, Seong-Hui;Cho, Seong-Ick;Hong, Jin-Suk;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.49.3-49.3
    • /
    • 2009
  • Geostationary Ocean Colour Imager (GOCI) is the first ocean color instrument that will be operating in a geostationary orbit from 2010. GOCI will provide the crucial information of ocean environment around the Korean peninsula in high spatial and temporal resolutions at eight visible bands. We report an on-going development of imaging and radiometric performance prediction model for GOCI with realistic data for reflectance, transmittance, absorption, wave-front error and scattering properties for its optical elements. For performance simulation, Monte Carlo based ray tracing technique was used along the optical path starting from the Sun to the final detector plane for a fixed solar zenith angle. This was then followed by simulation of red-tide evolution detection and their radiance estimation, following the in-orbit operational sequence. The simulation results proves the GOCI flight model is capable of detecting both image and radiance originated from the key ocean phenomena including red tide. The model details and computational process are discussed with implications to other earth observation instruments.

  • PDF

A Study on Construction of Collision Prevention Algorithm for Small Vessel Using WAVE Communication System (WAVE 통신을 활용한 소형선박의 충돌예방 알고리즘 구축에 관한 연구)

  • Lee, Myoung-ki;Park, Young-Soo;Kang, Won-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • In December 2017, many collision accidents of small vessels, such as those between oil refineries and fishing boats, occurred near Yeonghung-do in Incheon. In order to prevent marine casualties from small vessels, the government is striving to improve the safety capabilities of ship operators by strengthening education and improving the working environment. They are providing education and refining training regulations for fishermen operating vessels under 5 tons. However, the situation includes certain vulnerabilities. In this study, we propose a collision prevention algorithm for small vessels using the Wireless Access in Vehicular Environments (WAVE) communication system, which is a new communication technique to prevent collisions with small ships. The collision avoidance algorithm used is based on DCPA/TCPA. Research analyses, simulation experiments and questionnaires have been conducted to define the criteria of DCPA/TCPA. As a result, the standard for DCPA was $8(L_a+L_b)$ and for TCPA was 2.5 min. Three different accident cases were selected, and this algorithm was applied to confirm alarm responses at certain times. This algorithm can provide information to the operators of small ships in advance to help them recognize potential collision situations.

STUDIES OF GRAVITY WAVES USING MICHELSON INTERFEROMETER MEASUREMENTS OF OH(3-1)BANDS

  • Won, Young-In;Cho, Young-Min;Lee, Bang-Yong;Kim, J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • As part of a long-term program for polar upper atmospheric studies, temperatures and intensities of the OH(3-1) bands were derived from spectrometric observations of airglow emissions over King Sejong station($62.22^{circ}S,\;301.25^{circ}E$). These measurements were made with a Michelson interferometer to cover wavelength regions between 1000nm and 2000 nm. A spectral analysis was performed to individual nights of data to acquire information on the waves in the upper mesosphere/lower thermosphere. It is assumed that the measured fluctuations in the intensity and temperature of the OH (3-1) airglow were caused by gravity waves propagating through the emission layer. Correlation of intensity and temperature variation revealed oscillations with periods ranging from 2 to 9 hours. We also calculated Krassovsky’s parameter and compared with published values.

  • PDF

Real-time Visualization of Ship and Buoy Motions Coupled with Ocean Waves in a Ship Handling Simulator (선박 운항 시뮬레이터에서 해양파와 연동된 선박 및 부표 운동의 실시간 가시화)

  • Yeo, Dong-Jin;Cha, Moo-Hyun;Mun, Du-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.227-235
    • /
    • 2011
  • Ship handling simulator should have capabilities of calculating ship motions (heave, pitch, and roll) at given sea state and displaying the calculated motions through a real-time 3D visualization system. Motion solver of a ship handling simulator generally calculates those motions in addition to position for an own ship, a main simulation target, but provides only position information for traffic ships. Therefore, it is required to simulate real-time traffic ship and buoy motions coupled with ocean waves in a ship handling simulator for the realistic visualization. In the paper, the authors propose a simple dynamics model by which ship and buoy motions are calculated with the input data of wave height and discuss a method for the implementation of a ship and buoy motions calculation module.

CHARACTERISTICS OF ATMOSPHERIC WAVES OBSERVED FROM AIRGLOW MEASUREMENTS IN THE NORTHERN HIGH-LATITUDE

  • Won, Yong-In;Lee, Bang-Yong;Kwon, Soon-Chul
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.101-108
    • /
    • 2004
  • The terrestrial nightglow emission in near infrared region were obtained using a Fourier Transform Spectrometer(FTS) at Esrange, Sweden ($67.90^{\circ}$N, $21.10^{\circ}$E) and the OH(4- 2) bands were used to derive temperature and airglow emission rate of the upper mesosphere. For this study, we analyzed data taken during winter of 2001/2002 and performed spectral analysis to retrieve wave information. From the Lomb-Scargle spectral analysis to the measured temperatures, dominant oscillations at various periods near tidal frequency are found. Most commonly observed waves are 4, 6, and 8 hour oscillations. Because of periods and persistence, the observed oscillations are most likely of tidal origin, i.e. zonally symmetric tides which are known to have their maximum amplitudes at the pole.

Digital Simulation of Narrow-Band Ocean Systems (협대역 해양시스템의 Digital simulation)

  • 김영균
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.2
    • /
    • pp.22-26
    • /
    • 1981
  • Truncated expansions based upon the sampling theorem but containing only a few terms can be very useful for practical interpolations of band-limited or narrow-band random signals. The major goal of this work is to find and coiupare efficient and "statistically accurate" algorithms for the dynamic analysis of the ocean systems. The stalistical accuracy of truncated sampling interpolations is investicated, and one simple ocean systems, which yields a Runge-Kutta simulation algorithm of improved accuracy with very little increase in computation, is indicated.indicated.

  • PDF