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Abstract

Truncated expansions based upon the sampling theorem but containing only a few terms can be

very useful for practical interpolations of band-limited or narrow-band random signals. The major

goal of this work is to find and compare efficient and “statistically accurate” algorithms for the

dynamic analysis of the ocean systems.

The statistical accuracy of truncated sampling interpolations is investicated, and one simple ocean

systems, which yields a Runge-Kutta simulation algorithm of improved accuracy with very little

increase in computation, is indicated.

I. Introduction

In the design and evaluation of many kinds of
systems and controllers, it is necessary or desirable
to numerically evaluate the system performance with
random inputs. One oceanic application considered
involves simplified nonlinear models; namely a deep-
sea platform.

Such simulations are important, for example, in
determining whether or not maximum lmits on
stresses or displacements will be exceeded.

Random inputs permit the use of statistical error
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criteria (i.e., mean squared error). The sampling
theorem for band-limited signals, which is so invalu-
able theoretically to signal analysis and information
theory, can also be put to very practical use in the
interpolation of sampled signals, if expansions of only
a few terms are employed. Besides applications involv-
ing straight signal reconstruction, truncated sampling
expansions can be used to improve the accuracy of
digital-simulation algorithms used to determine dyna-
mic-system response. The statistical error criterion
used is the meansquared error between the “pseudo-
true” state and simulated state vector at the inter-
sampling points, with the *‘pseudo-true” state deter-
mined at the sampling points much denser than for
the simulation, which is at the Nyquist rate,
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For the simple nonlinear ocean system model,
actual wave-force data are used. The results of the
comparison study show that a modified Runge-Kutta
algorithm using a few terms of the sampling ex pansion
gives improved simulation accuracy over the standard
Runge-Kutta algorithm with little increase in computa-
tion.

II. Trancated Sampling Expansions for Bandlimited
Random Signals

Consider a Stationary random process of zero
mean and variance ¢?, with a uniform band-limited
spectrum, Let us approximate the sample function
f(t) of our random process over each interval (n-1)T to
nT by the truncated expansion:

k+
fa(0 = > f sincQwt ~i), j <0

1)
i=j+n
. . sinm X
where fj £ fa(iT), and sinc(x) -
T
(w being the single-sided bandwidth in Hz.)
We may define the mean-square error function:
E(t) = <[f(t ~fa(n)?> 2

(<> denotes statistical expectation)

E(t) is zero at each sampling point and is a periodic
time function since the random process is stationary
and the points used for the interpolation are related
to each interval in the same way. Hence, as an error
measure, we may define the time average of E(t):

T o1 T

E(t) =3 fo E(t) dt 3)
To aid in the calculation of E(t), we introduce the
following notation:

on(t) L sinc(2wt-n) = sinc(% - n) (4)

tn 2 fg ont (&t ®)

|-

In order to evaluate E(t) for various size expansions,

we find that we need to calculate £,. This can be
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done in terms of the since integral functions by a

simple change of variable, and we obtain:

fn = L (Sitm2n) - SiCn-1)20)) 6)

Sico = 7 ay Q)

A short tabulation of values of £y is given in Table L

Table 1.

n £n

45141
145141
.02355
00824
00417
00251
.00168
.00120
.00090
.00070
.00056
.00046
12 .00038
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With our assumption of independent samples, EMD
may be easily obtained in terms of the values of ¢p

as follows:

— 1T K
EQ =% fy <l - % fagn(0]?> dt ®)
n=j

Using the Sampling expansion for f(t), we obtain:

= 1 T > k
E® = fy <L Z_fafn(0 - I>1:=jfn:z>n(t)l’> dt
(refer [2])
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Since T _[0 n?:_i;m(t) dt Tf oo(h? dt =1 (10)
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Wehave E(t) =o* [1- 2 &)
m=j
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Fig. 1. E(t) as percent of signal variance.

“Symmetric’® data means the same number of
samples on either side of the interval being inter-
plated.

The decrease in E(1) as the number of terms in
the interpolating sum increases is indicated in Fig. 1
for *“‘symmetric’> data and for ‘‘present and past”
data. The errors are expressed as a percentage of the
variance o?. Also shown is the percent error for a

linear intetpolationlzl

, in which adjacent sample
points are simply connected by a straight line.

This plot indicate that the use of more than 10-12
terms results in a negligible increase in accuracy, and
this may be used as a guideline for practical interpola-

tion applications.

HI. System Modeling

There are many nonlinear system examples com-
monly encountered and therefore of general interest.
We select one simple second-order nonlinear systems

which is associated with ocean wave forces.l 31

An ocean structure model

A offshore platform structure fixed to the ocean
floor is assumed to vibrate in its first mode only when
subjected to random wave forces. The displacement
x of the platform is assumed to be the same as the dis-
placement for the equivalent spring-mass system
shown in Fig. 2.

The mass is a composite of the platform mass, the
leg mass, and a portion of the water mass which is
moved by the legs during free vibrations. K is the
spring constant determined from the structural stiff-
ness.

;24 —

9 . non-viscous damping

Fig. 2. Simple spring-mass system.(3]

The damping q is nonlinear.
System model:

mx(t) + x(t)|x(t) + Kx(t) =) a2

f(t) : a bandlimited random force
)‘((t)l;c(t)| : non-viscous damping force

Kx(t) : Spring force (assume linear)

IV. Algorithms

By examining the performance of typical methods
through tests on representative systems, it is shown
that for the general simulation of linear and nonlinear
systems, the variable-step-size Runge-Kutta-Merson
method proves to be the most accurate and the most
efficient (6).

Using three basic numerical algorithms:

1. FEuler method

2. Heun method

3. Fourth-order Runge-Kutta method

a comparison study has also been done for a cele-
brated second-order nonlinear differential equation

known as the Van der Pol equation (1).

%‘9- P(1 - x*(1)] -dﬁ?) +x() =0 a3

The Euler method is the first-order Runge-Kutta
method, and the Heun method is the second-order
Runge-Kutta method.

The comparison study shows that the fourth-
order Runge-Kutta method yields much greater
accuracy than the other methods”], and hence it is
a reasonable choice for the simulation of nonlinear
systems. ’

An ocean system model, eq. (12) can be vector-

formed as
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XM = gx(0, 0+, x(0) =0 (14)

The fourth-order Runge-Kutta formula with Runge’s
coetficients uses the following equations to step the
solution from kT to (k+2)T.

K = 2T[g(x(kT), kT) + f(kT)]

Ky = 2T[g(x(KT) + ky/5, (k+1)T) + f((k+1)T)]
K3 = 2T [g(x(kT) + K3, (k+2)T) + f((k+1)T)]
K4 = 2T [g(x(kT) + K3, (k+2)T) + f((k+2)T)]

x{((k+2)T) = x(kT) + (1/6)(K; +2K +2K3+K,) (15)

The truncated sampling expansion can be used to
give improved accuracy by the simple expedient of
estimating intermediate values of the forcing function
f(t), thereby allowing use of a decreased sampling
internal. For example, the usual fourth-order Runge-
Kutta method requires knowledge of f(t) at mid-
interval points in order to obtain derivative estimates

at the midpoint as well as at the end points of each
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simulation interval The simplest and most obvious
way of making use of the band-limited property of
f(1) is to use a truncated sampling expansion to
estimate the midpoint values f((n+%)T), thus allowing
the sampling interval for the Runge-Kutta algorithm
to be halved. Of course, additional interpolated values
of f(t) can be estimated and the sampling interval
further reduced. Whether or not this is warranted
depends upon the trade-off between accuracy and

efficiency for the particular case in question.

V. Simulation and Results

For an ocean platform model, the following
equation is chosen:

x(t) +0.05 X(x(t) +x(0) = (1) (16)

The equation parameters are relaistic for a class
of actual platforms. For the forcing function f(t),
actual sampled wave force data was used.

The wave force data were taken every 0.2 seconds,

and these forces were exerted by waves from Hurr-

As shown in the rather narrow-band spectrum, an
effective (double-sided) bandwidth was about 1.25Hz,
thus giving a Nyquist sampling interval of 0.8s.

Using the above nontinear second-order equation,
we investigated the mean-squared error between the
“pseudo-true” state and simulated state vector using
two different methods — i.e., the fourth-order Runge-
Kutta method and the modified Runge-Kutta method,
using a Nyquist sampling interval In this case, the
word, “pseudo-true” state was meant by using all the
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Fig. 3. Wave power spectrum.



Digital Simulation of Narrow-Band Ocean System

available wave force data, which were actually four
times denser than a Nyquist sampling. The mid-
point values of f(t) in the Nyquist intervals were
estimated using ten terms of the truncated sampling
expansion, and these midpoint values were used in
the modified Runge-Kutta method, with the sampling
interval T=0.8s. In the fourth-order Runge-Kutta
method, the sampling interval of 1.6s was used,

In the computer experiments, an estimate of the
mean-squared error between the so called, *‘pseudo-
true” state and the simulated state vector was obtain-
ed, and the percent error reduction achieved with the
modified Runge-Kutta method was about 57 percent
for each of the state variables x(1) and X(t) — a signifi-
cant improvement.

In the simulation process with the IBM-360 com-
puter, we found very little increase in computation
time with new algorithm. And in the actual dynamic
system analysis, more emphasis will be put on the
accuracy improvement over the conventional methods
rather than the computational loads. In these res-
pects, the new, developed algorithm might be the

most efficient and *‘statistically accurate’ one for the
dynamic system which has band-limited or narrow-

band random signals.
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