• Title/Summary/Keyword: Ocean radar

Search Result 257, Processing Time 0.029 seconds

Noise Removal of Radar Image Using Image Inpainting (이미지 인페인팅을 활용한 레이다 이미지 노이즈 제거)

  • Jeon, Dongmin;Oh, Sang-jin;Lim, Chaeog;Shin, Sung-chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.118-124
    • /
    • 2022
  • Marine environment analysis and ship motion prediction during ship navigation are important technologies for safe and economical operation of autonomous ships. As a marine environment analysis technology, there is a method of analyzing waves by measuring the sea states through images acquired based on radar(radio detection and ranging) signal. However, in the process of deriving marine environment information from radar images, noises generated by external factors are included, limiting the interpretation of the marine environment. Therefore, image processing for noise removal is required. In this study, image inpainting by partial convolutional neural network model is proposed as a method to remove noises and reconstruct radar images.

The Effect of Antenna Pattern Measurement According to Radio Wave Environment on Data Quality of HF Ocean Radar (전파환경에 따른 안테나패턴 측정(APM) 결과가 고주파 해양레이더의 자료 품질에 미치는 영향)

  • Jae Yeob, Kim;Dawoon, Jung;Seok, Lee;Kyu-Min, Song
    • Ocean and Polar Research
    • /
    • v.44 no.4
    • /
    • pp.287-296
    • /
    • 2022
  • High-frequency (HF) radar measures sea surface currents from the radio waves transmitted and received by antenna on land. Since the data quality of HF radar measurements sensitively depend on the radio wave environment around antenna, Antenna Pattern Measurements (APM) plays an important role in evaluating the accuracy of measured surface currents. In this study, APM was performed by selecting the times when the background noise level around antenna was high and low, and radial data were generated by applying the ideal pattern and measured pattern. The measured antenna pattern for each case was verified with the current velocity data collected by drifters. The radial velocity to which the ideal pattern was applied was not affected by the background noise level around antenna. However, the radial velocity obtained with APM in the period of high background noise was significantly lower in quality than the radial velocity in a low noise environment. It is recomended that APM be carried out in consideration of the radio wave environment around antenna, and that the applied result be compared and verified with the current velocity measurements by drifters. If it is difficult to re-measure APM, we suggest using radial velocity in generating total vector with the ideal pattern through comparative verification, rather than poorly measured patterns, for better data quality.

Efficient Operational Uses of High Frequency Radar for Naval Operations (해군작전시 단파(HF) 레이더 자료의 효과적 활용방안)

  • Lim, Se-Han;Kim, Kyoung-Chol;You, Hak-Yoel;Kim, Yun-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2292-2300
    • /
    • 2011
  • Exact and rapid acquirement of ocean environment information is going to become more of an indispensable source of naval operations. Ocean surface measurements using High Frequency (HF) radar, which covers about 10-220km and has spatial resolution of 0.3-12km, have being operated in our country. It remotely observe and transmit realtime sea surface currents and waves. In the near future, the HF radar systems will be established along the whole coastal area. A performance of network of HF radar will support various marine and naval activities. Operational uses of HF radar for enhancing naval operation ability are suggested.

Efficient Operational Uses of High Frequency Radar for Naval Operations (해군작전시 단파(HF) 레이더 자료의 효과적 활용방안)

  • Lim, Se-Han;Kim, Yun-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.341-348
    • /
    • 2011
  • Exact and rapid acquirement of ocean environment information is going to become more of an indispensable source of naval operations. Ocean surface measurements using High Frequency (HF) radar, which covers about 10-220km and has spatial resolution of 0.3-12km, have being operated in our country. It remotely observe and transmit realtime sea surface currents and waves. In the near future, the HF radar systems will be established along the whole coastal area. A performance of network of HF radar will support various marine and naval activities. Operational uses of HF radar for enhancing naval operation ability are suggested.

  • PDF

Analysis of Surface Current Measurement Based on X-band Radar Image (X-밴드 레이더 이미지 기반 표층해류 계측 분석)

  • Na-Yun Kang;Yu-Kyung Lee;Young-Jun Yang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.323-324
    • /
    • 2022
  • This paper explains the comparison results of surface current measurement using X-band Radar image through analysis. Measurements were carried out from February 2022 using the X-band Radar for marin ships installed at Sokcho Beach. Based on the Korea Hydrographic and Oceanographic Agency ocean observation buoys, the accuracy of surface current(current speed) measurement was verified through comparison and analysis of measurement data.

  • PDF

Analysis of stealth design for naval vessels with wide band metamaterials (함정의 스텔스 설계를 위한 광대역 메타물질 적용 연구)

  • Hwang, Joon-Tae;Hong, Suk-Yoon;Kwon, Hyun-Wung;Song, Jee-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2206-2212
    • /
    • 2017
  • When it comes to naval surface warfare, the probability of detection is an important factor in survivability and the Radar Cross Section(RCS) is a major parameter. In this paper, the RCS reduction technology of the Radar Absorbing Material(RAM) method is carried out for the general frequency range for naval warfare. We set the analysis model with the simplified ship model and the wide band metamaterial which is high-tech radar absorbing materials is selected for the RAM method. The modeling of the wide band metamaterial composed of an MIK surface which has the wide band resonant properties and flexible substance and the electromagnetic absorptions and reflections of the wide band metamaterial has been simulated to explore the performance. Also, the wide band metamaterial is compared with the paint absorber to analyze RCS reduction in terms of RCS values.

Short-Term Variability Analysis of the Hf-Radar Data and Its Classification Scheme (HF-Radar 관측자료의 단주기 변동성 분석 및 정확도 분류)

  • Choi, Youngjin;Kim, Ho-Kyun;Lee, Dong-Hwan;Song, Kyu-Min;Kim, Dae Hyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.319-331
    • /
    • 2016
  • This study explores the signal characteristics for different averaging intervals and defines representative verticies for each observatory by criterion of percent rate and variance. The shorter averaging interval shows the higher frequency variation, though the lower percent rate. In the tidal currents, we could hardly find the differences between 60-minute and 20-minute averaging. The newly defined criterion improves reliability of HF-radar data compared with the present reference which deselects the half by percent rate.

Current Status and Future Plans for Surface Current Observation by HF Radar in the Southern Jeju (제주 남부 HF Radar 표층해류 관측 현황 및 향후계획)

  • Dawoon, Jung;Jae Yeob, Kim;Jae-il, Kwon;Kyu-Min, Song
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.198-210
    • /
    • 2022
  • The southern strait of Jeju is a divergence point of the Tsushima Warm Current (TWC), and it is the starting point of the thermohaline circulation in the waters of the Korean Peninsula, affecting the size and frequency of marine disasters such as typhoons and tsunamis, and has a very important oceanographic impact, such as becoming a source of harmful organisms and radioactively contaminated water. Therefore, for an immediate response to these maritime disasters, real-time ocean observation is required. However, compared to other straits, in the case of southern Jeju, such wide area marine observations are insufficient. Therefore, in this study, surface current field of the southern strait of Jeju was calculated using High-Frequency radar (HF radar). the large surface current field is calculated, and post-processing and data improvement are carried out through APM (Antenna Pattern Measurement) and FOL (First Order Line), and comparative analysis is conducted using actual data. As a result, the correlation shows improvement of 0.4~0.7 and RMSE of about 1~19 cm/s. These high-frequency radar observation results will help solve domestic issues such as response to typhoons, verification of numerical models, utilization of wide area wave data, and ocean search and rescue in the future through the establishment of an open data network.

Space-based Ocean Surveillance and Support Capability: with a Focus on Marine Safety and Security (인공위성 원격탐사의 활용: 선박 감시 기법)

  • Yang, Chan-Su
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.05a
    • /
    • pp.41-45
    • /
    • 2006
  • From the 1978 Seasat synthetic aperture radar(SAR) to present systems, spaceborne SAR has demonstrated the capability to image the Earth's ocean and land features over broad areas, day and night, and under most weather conditions. The application of SAR for surveillance of commercial fishing grounds can did in the detection of illegal fishing activities and provides more efficient use cf limited aircraft or patron craft resources. In the area of vessel traffic monitoring for commercial vessels, Vessel Traffic Service (VTS) which uses the ground-based radar system has some difficulties in detecting moving ships due to the limited detection range cf about 10 miles. This paper introduces the field testing results of ship detection by RADARSAT SAR imagery, and proposes a new approach for a Vessel Monitoring System(VMS), including VTS, and SAR combination service.

  • PDF